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Abstract

This paper presents a novel architecture of neural networks designed for pattern recognition.
The concept of induction graphs coupled with a divide-and-conquer strategy de3nes a neural
network induction graph (NNIG). First, the NNIG concept is described and its properties detailed.
It is based on a set of several little neural networks, each one discriminating only two classes. The
specialization of each neural network simpli3es their structure and improves the classi3cation.
The principle used to perform the decision of classi3cation on an input pattern is explained.
The latter enables to take into account dubious decisions identi3ed by the NNIG. The last
section presents experimental results. A signi3cant gain in the global classi3cation rate can be
obtained by using an NNIG. The discussion is illustrated by tests on databases from the UCI
machine learning database repository. The experimental results show that an NNIG can achieve
a better learning, simpler neural networks and an improved performance in classi3cation. A 3nal
illustration is presented on a real microscopical imaging problem for the classi3cation of cells
in serous cytology.
c© 2003 Elsevier B.V. All rights reserved.

PACS: 07.05.Mh; 07.05.Kf; 87.57.Ra

Keywords: Induction graphs; Neural networks; Dubious decisions

∗ Corresponding author. Tel.: +33-(0)-233775517; fax: +33-(0)-233771167.
E-mail addresses: olivier.lezoray@info.unicaen.fr (O. Lezoray), dominique.fournier@univ-lehavre.fr

(D. Fournier), hubert.cardot@univ-tours.fr (H. Cardot).

0925-2312/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.neucom.2003.10.010

mailto:olivier.lezoray@info.unicaen.fr
mailto:dominique.fournier@univ-lehavre.fr
mailto:hubert.cardot@univ-tours.fr


258 O. Lezoray et al. / Neurocomputing 57 (2004) 257–274

1. Introduction

Data classi3cation is a central problem in the 3eld of pattern recognition. A lot of
methods have been proposed to this aim and they have become classical ones (decision
trees [3], Bayesian approach [5], fuzzy clustering [6], cluster analysis [5]). Many of
them have led to numerous industrial applications. In recent years, neural networks
and more particularly multi-layer perceptrons (MLP) [9] have received a great deal of
attention. The reasons for this success essentially come from their universal approxi-
mation capabilities. An important problem in the building of a suitable neural network
architecture is the choice of its structure which is generally chosen a priori. Dealing
with complex problems, to obtain a good generalization behavior is not a trivial task
and has to be carried out by a neural network specialist. In this paper, a new strategy
for building a neural classi3er is introduced. The latter rede3nes the learning task of a
classical large neural network in several simpler ones. Using simpler networks can lead
to good generalization abilities without requiring human assistance. The rede3nition of
the learning task into several smaller ones follows a divide-and-conquer strategy since
it splits the classi3cation problem into several simpler ones.
The paper is organized as follows. Section 2 details the outline of our neural network

architecture which is called neural network induction graph (NNIG). Section 3 details
the principle and the construction of the NNIG. From the latter, class discrimination is
performed even for uncertain decision cases as it will be further discussed. In the last
section, we present experimentations on the University of California at Irvine (UCI)
repository data sets [1] and from our own works on neural pattern recognition in
microscopic imaging [14].

2. Induction graphs

Decision tree is a non-parametric classi3cation method widely used in pattern recog-
nition. Such classi3ers use decision functions which partitions the feature space into
two regions to determine the identity of an unknown input pattern. These decision func-
tions are organized in such a way that the outcome of successive decision functions
re3nes the decision of classi3cation. The result of the learning process is represented
by a tree whose nodes specify decision functions on attributes values and whose leaves
correspond to sets of input examples with the same class or to elements in which no
more attributes are available. This data classi3cation method is brought into widespread
use in induction graph theory [16,21]. Induction graphs are a generalization of decision
trees. In a decision tree, the classi3cation decision is made from root towards leaves
without possible backward return from a node to a lower or higher level node in the
tree. Induction graphs enable to introduce links between diHerent level nodes and thus
compose a graph structure. This method is now much used in browsing data methods
such as knowledge retrieval from the data (also called data-mining [7]). Many works
use a tree structure to build either a neural tree [19] (the nodes of the tree being neu-
rons which are used as non-linear binary decision functions), or neural networks trees
[17,18] (nodes of the tree being neural networks which are used as non-linear n-ary
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decision functions). We propose to de3ne a new structure based on a graph of neural
networks which is called an NNIG. Unlike the usual methods, we do not build a neu-
ral network tree but a structure whose nodes are neural networks and are completely
connected, namely, a neural network induction graph.

3. Classi�cation by a NNIG

3.1. NNIG principle

The construction of the NNIG is supervised. It builds a neural network graph. When
there is a large number of classes labelling the data, the classi3cation by only one large
network can be diJcult: this neural network encounters diJculties with generalization.
What we suggest consist in using only small neural networks and to simplify the
problem we reduce the number of classes to be recognized: each network has to classify
only two classes. Therefore, to discriminate more than two classes, several networks
are needed. Our architecture arises in the following way. The neural networks used in
this paper are MLP networks with back-propagation of the gradient error MLP. The
NNIG construction is done in three steps:

• The construction of the neural networks, knowing the number of classes of objects
to be separated.

• The training of each neural network.
• The construction of the NNIG.

3.2. Construction of a NNIG

For a classi3cation problem with n classes, a set of unconnected networks is built,
each one being in charge of separating elements from two distinct classes. The set
of diHerent classes is denoted by C = {C1; C2; : : : ; Cn} and |C| = n. For n classes,
that leads to have (n(n − 1))=2 neural networks being used for classi3cation. The
set of neural networks is given by R = {Rc1 ;c2 ;Rc1 ;c3 ; : : : ;Rcn−1 ;cn}. The training of
each neural network is processed in a sequential and unordered way. The networks
learn one by one according to the order in which they were created. That does not
have any inLuence on the training of each network since there is at this time no
connection between them. The diJculty in separating n classes is simpli3ed by the
specialization of each network, because a network is interested only in the separation
of two classes. When one of these neural networks learns how to diHerentiate two
classes, only the objects belonging to these two classes are presented to the neural
network. This implies, on the one hand to simplify the training (since the set of data
to be learned is restricted) and on the other hand, to make easier the discrimination
between these two classes since the network learnt how to recognize only those. The
global training data set containing patterns of all the diHerent classes is denoted by ST.
The latter is divided in several subsets for each neural network. ST(ci; cj) is the data
set which corresponds to the neural network which diHerentiates the classes Ci and Cj
and contains patterns of only those two classes. The initial training data (ST(ci; cj))
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Fig. 1. The NNIG created for a four class problem. Rci ;cj denotes the network discriminating the classes Ci
and Cj .

associated to each neural network is split into two subsets: a learning set (SL(ci; cj)) and
a validation set (SV(ci; cj)). The latter consists in 20% of ST(ci; cj) and the learning set
in 80% of ST(ci; cj). The learning of a neural network is performed on SL(ci; cj) and the
SV(ci; cj) validation set is used to evaluate the classi3cation rate of the network during
the training. Therefore, the validation set is not learnt by the neural networks. The
structure of the neural networks used is the following one: a layer of inputs containing
as many neurons as the number of attributes associated with the object to be classi3ed,
a hidden layer containing a variable number of neurons and one output neuron. The
value of the output neuron is in the interval ]−1; 1[. According to the sign of the result
associated with this single neuron, an object is classi3ed in one of the two classes that
the network separates. The neural networks used by our architecture are very simple
(only one hidden layer, only one neuron of output). This has several advantages. The
simplicity of the task associated to each neural network simpli3es the convergence of
the training as well as the search for a simple structure. The generalization of their
structure can be made in a dynamic way very easily. Therefore, an automatic method is
used to 3nd the number of hidden neurons that gives the best classi3cation rate [4,12].
Once the training of a Rci ;cj network is carried out, the classi3cation rate Q(Rci ;cj) of
this network is available. The latter is obtained on the SV(ci; cj) validation data set and
thus relates only to data that have not been learnt. Once all the neural networks were
created and trained independently, the NNIG is built. Each neural network is connected
to all the other ones. This produces a graph of fully connected neural networks. The
networks are not directly connected to one another: there is no link between the neurons
of each neural networks. The NNIG de3nes an unweighted and unoriented graph with
a structure that enables to know which network is directly reachable from one node
of the graph. An example for the creation of the NNIG with a four class problem is
given in Fig. 1. Six diHerent neural networks are created, each one discriminating only
two classes.

3.3. Branch quality index (QI)

After the training step, each neural network obtains a classi3cation rate (denoted
Q(Rci ;cj)). When a neural network classi3es a new pattern X , it gives the value of
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the output neuron O(Rci ;cj ; X ). The sign of this value gives the class of X . It will
be noted thereafter that if a neural network separates two classes Ci and Cj, an input
pattern X is considered as class Ci if O(Rci ;cj ; X )¡ 0 and Cj if O(Rci ;cj ; X )¿ =
0. However, it might be bene3cial to weight the decision of each neural network
according to diHerent factors. Three elements act upon the result given by a network:
its potential of classi3cation (the classi3cation rate), its decision (the value of the
output neuron) and the representativity of the data set used for the training [8]. Using
only the value of the output neuron to assess the relevance of a classi3cation performed
by a neural network may cause dubious decisions. We suggest to use a (QI) which
makes a trade-oH between all these parameters. For a neural network Rci ;cj and an
input pattern X , we de3ne:

QI(Rci ;cj ; X ) = |O(Rci ;cj ; X )|Q(Rci ;cj)
|E(Rci ;cj)|
|log(n)| (1)

with E(Rci ;cj) =
|SL(ci; cj)|

|SL| log
( |SL(ci; cj)|

|SL|
)
: (2)

|SL| and |SL(ci; cj)|, respectively, denote the size of the global learning data set and the
speci3c one associated with the Rci ;cj neural network. QI quanti3es the relevance of a
given neural network of the NNIG for a classi3cation decision. A NNIG being a set
of connected neural networks, it is therefore possible to de3ne, as for classical graphs,
a branch in the NNIG. A branch in the NNIG is an ordered set of neural networks
following the connections between one network to another. Since a QI is computed
with each network of a branch, we can de3ne a branch quality index (BQI) which
gives the relevance of the set of neural networks used. The Branch Quality Index is
de3ned as the sum of all the Quality Index of the neural networks of the branch and
formally given by

BQI(�; X ) =
|�|∑
i=1

QI(�i; X ); (3)

where � is an ordered set of neural networks and �i the ith network of �.

3.4. ClassiAcation decision by a NNIG

3.4.1. Selection by elimination principle
Once an NNIG has been created, the problem of the choice of the identity of an input

pattern (its 3nal class) arises. Indeed, if an object is proposed to a neural network of
the NNIG and if the unknown input pattern does not belong to one of the two classes
discriminated by a neural network, the answer is not signi3cant and that is likely
to distort the decision of classi3cation. We set up with this intention a selection by
elimination. By selection we understand determination of the identity (i.e. class) of an
input pattern and by elimination we indicate the way to choose the class. If a network
of the NNIG is used, the latter will classify the object in one of the two classes that
it diHerentiates (Ci and Cj). If this network indicates the object as belonging to the
class Ci then Cj is eliminated and reciprocally. This is the principle of elimination.
To classify a pattern X by an NNIG, successive interrogations of the neural networks
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progressively eliminate the possible classes until only one 3nal class is available giving
the identity of the unknown input pattern. This implies the following de3nition.

De�nition 1. For n classes to diHerentiate, a branch in the NNIG has a depth of (n−1)
neural networks.

3.4.2. � paths in a NNIG
Following the elimination principle, an initial neural network is 3rstly chosen as an

entry in the NNIG. This network de3nes the 3rst one which is requested to classify
the input pattern and designs the 3rst level of classi3cation. The network classi3es
the pattern and a class is eliminated. Then, adjacent networks of the initial one can
be further used to continue the classi3cation until only one class is available. Using
successive interrogations, the decision of classi3cation is gradually improved and the
3nal class remaining is the one associated to the input pattern. However, the order
of the successive networks involved in the classi3cation decision has to be precised.
To this aim we de3ned the �-paths in the NNIG. �∈ [0; (n ∗ (n − 1))=2] and de3ned
the maximum number of neural networks which can be used at each level i of the
successive interrogations. At the 3rst level, � initial neural networks are chosen and
de3ne the 3rst requested networks. For each one of these latter, a class Ck is eliminated
(which is not almost the same for all these networks since they do not discriminate
the same classes). Furthermore, for each initial networks, a set of adjacent networks is
de3ned by A(Rci ;cj). This set contains all the networks directly adjacent to the Rci ;cj
network that is to say all the other networks of the graph except the one considered:
therefore it does not depend on the depth i.
For the classi3cation, a constraint is precised: for each network, adjacent networks

which are considered in A(Rci ;cj) must not contain all the previously eliminated classes
since they have already been eliminated. The set of reachable adjacent networks
(RA(Rci ;cj)) is therefore a subset of A(Rci ;cj). Maximum � networks of the subset
RA(Rci ;cj) are considered for the successive interrogations.

De�nition 2. At a given depth i and for Rci ;cj a given node in the NNIG, there are
(n− i)(n− i − 1)=2 networks which compose RA(Rci ;cj) the set of reachable adjacent
neural networks.

Theorem 3. At a given depth i, the number of reachable adjacent nodes which can
be used in the �-path is given by

’(i) =
(n− i)(n− i − 1)

2
and if ’(i)¿� then ’(i) = �:

Corollary 4. A �-path contains a total of � =
∑n−1
i=1 �i nodes. �i gives the total

number of nodes at a given level i in the �-path for all the diCerent branches and is
deAned by �1 = � and �i = ’(i − 1)× �i−1.

Corollary 5. A �-path is composed of �n−1 diCerent branches.
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Fig. 2. Example of 1-path in an NNIG. The eliminated classes are shown on the links.

Fig. 3. Example of 2-path in an NNIG: 3rst case, the two branches lead to the same 3nal network R3;4.

Fig. 2 presents a 1-path in an NNIG. Since �=1, only one network is considered at
each level of successive interrogations of the path. The R1;3 is considered as the initial
network and the class 1 is eliminated (this is shown on the links). At this stage only
networks which do not discriminate the class 1 are considered as reachable adjacent
networks: RA(R1;3) = {R2;3;R2;4;R3;4}. The networks R2;3 and R3;4 are then used
and eliminate respectively the classes 2 and 4. The input pattern is therefore designed
as the class 3 since it is the last remaining one.
We can also study an example with a 2-path in the same NNIG graph. Two initial

networks are chosen, each one of the latter eliminates one class and in their reachable
adjacent networks two networks are chosen. The principle is repeated until only one
class is available for each branch of the 2-path. Figs. 3 and 4 give an example of
the branches de3ned by selecting two initial neural networks. The �-path generated
is the following: {{R1;3;R2;3;R3;4}, {R1;3;R2;4;R3;4}; {R1;4;R1;2;R2;3}, {R1;4;R2;3;
R1;3}}, it is constituted of �3 = 4 diHerent branches. For �-paths, with �¿ 1, the
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Fig. 4. Example of 2-path in an NNIG: second case, the two branches lead to diHerent networks R1;3 and
R2;3.

branches can use diHerent networks and give the same 3nal class using the same 3nal
network (3rst case, Fig. 3) or give the same 3nal class using diHerent 3nal networks
(second case, Fig. 4): it depends on the networks used. But there can be also diHerent
3nal classes obtained by using diHerent branches (third case, to be further explained,
Fig. 6). Therefore several key parameters needs to be de3ned:

• How to choose at each level of the �-path, the � neural networks?
• How to choose the 3nal class for the input pattern if, for the diHerent output leaves,
several diHerent 3nal classes are associated to the input pattern ?

3.4.3. Decision of classiAcation
To obtain the best decision of classi3cation, the best neural networks as regards

their ability to classify an input pattern can be used. Since at each level of a branch of
the �-path, ’(i) neural networks have to be chosen to build the latter, a quantitative
measure is needed to make the choice and the QI associated to each neural network is
used. For a node Rci ;cj , the � networks retained for the �-path are that one maximizing
the QI criterion in the RA(Rci ;cj) subset. This de3nes a method to automatically build
a �-path in the NNIG for an input pattern to classify. A branch is an ordered set of
nodes and a node is called a leaf if it is the last of the branch (the 3nal decision).
Since a �-path is composed of several branches, several leaves are available. For each
leaf corresponds a 3nal class associated to the input pattern. Since the leaves are
not necessarily identical for all the diHerent branches, the �-path can associate several
diHerent 3nal classes to the input pattern. Instead of choosing the leaf whose branch has
the best BQI, we propose to choose the maximum of the sum of the decisions [2,10]
associated to the diHerent branches of the �-path. For each leaves of the �-path (denoted
by L1; : : : ; L�n−1 ) the BQI of the branches (denoted by B1; : : : ; B�n−1 ) containing each
leaf is associated. Bi leading to the same 3nal class are summed and this implies the
following de3nition.
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Fig. 5. Example of the developed branches for a 3-path in an NNIG for four classes with the maximum  
value bold faced.

De�nition 6. For each class Ci, P(Ci; X )=
∑�n−1
j=1 Bj(X ) if !(Bj; X )=Ci where !(Bj; X )

denotes the 3nal class associated to the element X by the branch Bj.

The class Ck designed as the 3nal class of an input pattern X is the one having the
maximum  (Ck; X ) value: Ck = argmaxni=1 (Ci; X ). This technique enables to choose
the more plausible class according to the purity of the diHerent branches.  depends
on the value of � since the sum is performed over �n−1 which depends on it. Figs 5
and 6 resume the diHerent �-path builded for a four-class discrimination problem with
�=3. Maximum three networks are chosen at each level of the �-path. These networks
are that one maximizing the QI value. �3 = 9 diHerent branches are developed in the
NNIG. In the proposed example, three diHerent classes are obtained by the diHerent
branches and the value of  (Ci; X ) is used to choose the 3nal class of the input pattern
X . In this case, the class 3 is chosen since the sum of the decisions associated to the
diHerent branches which led to this particular decision of classi3cation is maximum.
Fig. 6 presents the �-path developed in the NNIG and Fig. 5 presents the developed
branches for each one of the � initial networks (this 3gure is given only for a better
explanation using a tree-like structure).

4. Experimental results

The databases for which results will be presented here are real databases coming
from the Machine Learning Data Repository of the UCI [1] and also from our own
works on microscopical imaging [14]. These databases are used in various articles on
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Fig. 6. All the possible developed branches in a 3-path NNIG for four classes: three possible choices as the
3nal class.

Table 1
Databases used for the tests

Database n na |ST| |STest|
Wine 3 13 144 34
Vehicle 4 18 679 167
Pageblocks 5 10 4382 1091
Segment 7 19 176 36
Glass 7 9 175 39
Shuttle 7 9 43500 14500
Pendigits 10 16 7494 3498
Optdigits 10 64 3065 760
Letter 26 16 16000 4000

classi3cation. This will enable us to compare the performances of our architecture with
the traditional MLP neural network approach.

4.1. Description of the databases

Table 1 summarizes the properties of each database. They correspond to very diHerent
problems (medical, segmentation of images, character recognition, wines, cars, etc.).
Each database is characterized by the number of classes to discriminate (n), the number
of attributes describing a pattern (na) and the number of instances in the training and
test databases denoted by |ST| and |STest| (see Table 1). Nine databases coming from
the UCI were used. For each neural network Rci ;cj , the training is performed on ST
and the rate of classi3cation further presented is measured on the test data base only
(STest).



O. Lezoray et al. / Neurocomputing 57 (2004) 257–274 267

Table 2
InLuence of � on the classi3cation rate, the best rates are bold faced (precision of the results: 0.001)

� 1 2 3 4 5 6 7 8

Wine 97.14 97.14 97.14 97.14 — — — —
Vehicle 68.45 69.64 69.64 68.45 69.05 69.05 — —
Pageblocks 88.46 88.55 88.55 88.37 88.55 88.46 88.37 88.37
Segment 91.67 91.67 91.67 91.67 91.67 91.67 91.67 91.67
Glass 67.50 70.00 67.50 67.50 67.50 67.50 67.50 67.50
Shuttle 95.59 95.59 95.66 95.69 95.71 95.73 95.75 95.71
Pendigits 89.03 89.14 89.08 89.14 89.14 89.14 89.14 89.14
Optdigits 91.05 91.05 91.05 91.18 91.31 91.44 91.31 91.31
Letter 76.97 76.97 76.97 76.97 76.97 76.97 76.97 76.97

4.2. Result analysis

In this section, the inLuence of the � parameter on the generalization ability of the
NNIG according to the databases is studied. Table 2 summarizes the results obtained
with the variation of � and presents the rate of classi3cation on the STest test databases.
We recall here that �∈ [0; (n ∗ (n − 1))=2] since at the 3rst level of the NNIG, the
maximum number of neural networks that can be used corresponds to the total number
of networks of the NNIG. Table 2 is presented in the following way: the results are
given on a line for each database and for diHerent values of �. One can note 3rst of
all that the rate of classi3cation does not progressively increase with � and that some
variations occur along its evolution. But for each database, the best rate of classi3cation
is obtained before these variations appear: the rate of classi3cation gradually increases
with � until an upper limit then Luctuates. A second analysis of the results shows
that the best rate of classi3cation is obtained for various values of � according to the
databases. In certain cases, � = 1 is enough, which represents the use of only one
branch in the NNIG to carry out the decision of classi3cation: that implies a good
generalization of the NNIG which provides few dubious cases as it will be further
discussed.
We can now compare (see Table 3) the results obtained between a NNIG and tradi-

tional MLP (trained with the same method as the networks of the NNIG, see in [13]).
The 3rst column gives the database, the second the classi3cation rate obtained with an
NNIG, the third the classi3cation rate with a traditional MLP, the fourth the learning
time of the whole NNIG, the 3fth the mean learning time over the networks of the
NNIG, the sixth the learning time of the traditional MLP. Times are given in seconds.
One can note that for all the bases, the NNIG makes it possible to obtain better results
in all the cases ranging from simpler (few classes) to more complex (many classes)
databases. The rate of classi3cation of the NNIG used for the comparison corresponds
to the best rate obtained among the various values of �. The NNIG performs between
0% and 17.5% better than a traditional MLP. But the NNIG has several other advan-
tages [13]. As the number of classes increases the traditional MLP presents diJculties
of generalization and its learning is longer. As compared to a traditional large MLP,
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Table 3
Comparison between an NNIG and an MLP in terms of classi3cation rate and learning time convergence
with best rates bold faced

Database NNIG MLP L. time Mean l. time MLP l. time

Wine 97.14 97.14 0. 0. 0.04
Vehicle 69.64 66.67 19.24 3.21 4.08
Pageblocks 88.55 84.80 26.77 2.68 5.92
Segment 91.67 80.56 6.26 0.3 4.57
Glass 70.00 52.50 9.12 0.43 6.92
Shuttle 95.75 79.15 132.19 6.29 44.3
Pendigits 89.14 83.82 75.69 1.68 76.18
Optdigits 91.44 90.39 104.75 2.33 138.49
Letter 76.97 62.45 1167.86 3.59 1680.68

Note: l. time = learning time.

Table 4
Breakdown of the study of uncertain cases for an NNIG

Database Id-Classes Correct Id-Classes Correct DiH-Classes

Wine 100 97.14 —
Vehicle 99.40 69.46 100
Pageblocks 99.54 88.59 80
Segment 100 91.67 —
Glass 90 66.67 100
Shuttle 99.56 95.96 48.44
Pendigits 99.34 89.56 26.09
Optdigits 96.58 93.05 46.15
Letter 100 76.97 —

the NNIG structure is simpler, it enables incremental learning and its interpretation is
easier since a branch provides a grading of the classi3cation decision. Owing to the
mean learning time of each network of the NNIG, it can be assessed that their learn-
ing is fast since their classi3cation task is easier. The incremental learning is therefore
of big interest since adding new data to the learning set implies only the learning of
the involved network (which learn fast). The divide-and-conquer strategy employed
coupled with a graph of neural networks thus proves to be very eJcient for the clas-
si3cation of data. However no automatic method is provided to automatically 3nd the
best value of �, this will be further investigated.
We focus now on the study of the dubious cases for an NNIG. A dubious case

corresponds to the appearance of several diHerent 3nal classes on the level of the
leaves of an �-path.
Table 4 summarizes the study of the dubious cases. An �-path used to classify an

input pattern X can bring to identical classes (pure case) or to diHerent classes (dubious
case). The use of the  criterion makes it possible to manage the dubious cases.
Table 4 gives the percentage of identical 3nal classes (Id-Classes) obtained on the test
databases for the best �-path. It is noted that the cases where all the 3nal classes are
identical always correspond to �=1. That is easily explained. If an �-path is pure (all
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Table 5
The worst neural networks leading to bad decisions and penalizing the whole NNIG architecture

Database Networks

Wine R1;2 — —
Vehicle R0;1 R1;2 —
Pageblocks R0;1 R0;2 —
Segment R2;4 R2;3 —
Glass R0;1 R0;2 —
Shuttle R1;4 — —
Pendigits R1;2 — —
Optdigits R1;8 R8;9 —
Letter R18;25 R6;16 R5;15

the 3nal classes obtained are identical), an increase of � will not inLuence the rate of
classi3cation on the test database. On the other hand if the �-path is more dubious (less
pure cases), an increase of � makes it possible to better take into account the database
and thus allows a better generalization. That explains why for some databases, � = 1
is suJcient whereas for other ones it is necessary to gradually increase � to improve
the management of the dubious cases. Table 4 also presents the rate of identical cases
which were correctly classi3ed (Correct Id-Classes). Indeed, an �-path for which all
the paths bring to the choice of the same 3nal classes can appear correct or not (the
chosen class is not necessary the right one). The percentage of the correctly classi3ed
dubious cases is also presented (Correct DiH-Classes). Several remarks are essential.
The rate of identical classes is generally high whatever the bases (higher than 96%),
which reveals a certain homogeneity of the learning of the networks with respect to the
data. On the other hand, one can note that all these identical classes are not inevitably
well classi3ed and one can suppose that an increase of � will change nothing. For the
cases where the rate of identical classes correctly classi3ed is weaker, the management
of the dubious cases appears very eHective and for the cases where the rate of identical
classes correctly classi3ed is high, it is much less eJcient.
In order to explain why some pure cases are badly classi3ed, it is interesting to

know which neural networks eliminated the reference class of the input pattern for the
identi3cation of the networks performing detrimental classi3cation errors. The detection
of these networks identi3es the weaknesses of the NNIG and enables to precisely point
out the networks to be improved. This improvement necessarily implies an improvement
of the learning database and a new learning of the selected neural networks. The
advantage of the NNIG is that it allows an incremental learning [20]: the inducer is
not completely rebuilded to learn from new data bringing further information and thus
allows an easier improvement of the inducer performances. Table 5 gives an example
of the worst neural networks retained for each database and having to be improved.

4.3. Feature selection

The networks used in the NNIG have a simple structure with a reduced number of
neurons in the hidden layer. However, we can simplify these networks again, because
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Table 6
InLuence of the SFFS feature selection on the NNIG in terms of classi3cation rate

Database NNIG SFFS

Wine 97.14 97.14
Vehicle 69.64 75.00
Pageblocks 88.55 90.38
Segment 91.67 94.44
Glass 70.00 70.00
Shuttle 95.75 97.10
Pendigits 89.14 90.74
Optdigits 91.44 92.11
Letter 76.97 77.68

Table 7
Comparison of the number of attributes for each neural network of the NNIG

Base Initial Min Max Mean Std. dev.

Wine 13 13 13 13 0
Vehicle 18 4 10 7.66 2.05
Pageblocks 10 2 6 3.1 1.3
Segment 19 2 16 4.09 4.12
Glass 9 2 9 4.52 2.97
Shuttle 9 1 9 4.33 3.03
Pendigits 16 2 13 4.82 2.38
Optdigits 64 2 64 40.68 19.30
Letter 16 2 16 9.11 3.22

one of the remaining layers can be simpli3ed: the input layer. Indeed, better results
in term of classi3cation rate can be obtained by removing the irrelevant attributes
and therefore reducing the uncertainty. All the more, the relevant attributes can be
selected for each neural network and therefore some attributes can be used in one
network and not in the other ones: that makes it possible to know the relevance of
each attribute according to the classes to diHerentiate. That concerns a well-known
classi3cation research topic: relevant feature selection. In this paper, the SFFS feature
selection algorithm [15] has been used. This algorithm is known as wrapper heuristic
[11] since the classi3cation rate of the inducer is used to select the relevant features.
The results are given in Table 6. The latter gives the rate of classi3cation using the

NNIG alone and with the SFFS feature selection algorithm. The selection of attributes
enables to increase once again the rate of classi3cation of the NNIG. The feature
selection improves the classi3cation of the identical classes which were incorrectly
classi3ed and decreases the number of dubious cases by reducing the global uncertainty.
To illustrate the utility of the selection of relevant attributes, Table 7 gives, for the
SFFS algorithm and several databases, the minimum, the maximum, the mean and the
standard deviation of the number of attributes used by all the networks of the NNIG.
The selection of attributes is very useful since some networks 3nally have a very low
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Fig. 7. A cytological color image and the corresponding segmentation.

number of features after the selection and for some databases, several attributes can
be totally eliminated since they are irrelevant. The mean number of attributes is also
lower than the initial number of attributes and that proves that for some networks
few attributes are relevant. The feature selection for each network is therefore very
interesting to simplify the complexity of each neural network and therefore of the
whole NNIG.

4.4. Microscopical imaging

To illustrate the ability of the NNIG for pattern recognition, it is applied to the
recognition of cells in serous cytology. In pathological anatomy and cytology, there
are two types of examinations. The histology is the observation of the tissue and the
cytology is the examination of a smear of cells. We are interested more particularly
in the serous cytological examination. The samples are smeared over slides, 3xed and
colored in order to recognize the cells. Smears are examined under a microscope by a
cytotechnician in order to locate cells of interest. That reading slide stage consists in a
visual evaluation of the cells present on a cytological slide and is called screening. The
goal of that stage is either the detection of abnormal or suspect cells, or the quanti3-
cation of cells. That is thus of capital interest for the pathologist who must establish a
reliable and valid diagnosis. We suggest to use the NNIG to build an automatic cellu-
lar sorting system for serous cytology. That system is called HERCULS (HElp to the
Research in cytology by Computer cell ULar Sorting). Images are 3rstly segmented
using color Mathematical Morphology operators (Fig. 7) and all the objects (the cells)
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extracted in the images are described by 46 attributes ranging from size, shape, color
and texture [14]. The choice of the attributes (i.e. descriptors) is very signi3cant and
is guided by the vision task which can be expressed as a priori information on the
cells. For that experimentation, the various types of objects that can be met in serous
cytology were indexed, that represents a rather important number of classes of cells to
be recognized [13] and an NNIG can help in the recognition.
We are therefore interested in the isolated cells (which can be normal, abnormal

or suspect cells). They must be distributed in the 18 diHerent classes of objects. The
isolated cells are classi3ed by an NNIG with the SFFS feature selection method. The
training of our architecture is carried out on a learning database of 3870 cells and
tested on a database of 1967 cells. The total rate of recognition of the NNIG after
the learning with feature selection by the SFFS wrapper method is 83.54% for the
cells of the test database (the recognition rate of the NNIG without feature selection
is 72.36% which is higher than the one obtained using a single large neural network:
55.90%). The percentage of identical classes is of 100% which reveals the homogeneity
of the database. However, a work of extension of the base remains to be carried out
in order to balance and to increase the number of cells of each class. Certain classes
are few represented and thus under learned by the NNIG, which does not make it
possible to give enough signi3cant results for these classes. This can be veri3ed by
an analysis of the worst neural networks which correspond exactly to the diJculties
encountered by the experts for the tagging of the objects. According to the aims of
our system HERCULS, namely detection of abnormal or suspect cells, our system is
very satisfactory because (after grouping of the same categories of cells) 94.5% of the
abnormal cells and 99% of the normal cells are recognized, which greatly exceeds the
success rate of an expert. From that point of view and since our system operates as
an assistance to screening, one can think, within sight of the results obtained, that an
abnormal cell omitted by the cytotechnician will be detected by the NNIG.

5. Conclusion

We suggested a new neural network architecture based on induction graphs and
binary neural networks according to a divide-and-conquer principle. The properties
of an NNIG for classi3cation problems and mainly pattern recognition problems has
been studied and this new architecture has proved its superiority compared to a tra-
ditional MLP. In addition to its strength of classi3cation, an NNIG is able to iden-
tify and manage dubious decisions using the mean decision of several classi3cation
decisions. Another interest of the NNIG is their particular properties for incremen-
tal learning: the whole inducer is not totally rebuilded once new training data are
available.
Future works will concern the extension of the NNIG to weighted NNIG. It might

be interesting to add another step of learning in order to weight the links between
the diHerent networks of the NNIG. This will enable to better manage the uncertain
cases by penalizing the worst networks of the NNIG. Other techniques coming from
graph theory might be applied to the NNIG structure in order to automatically 3nd
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the best branch in the graph without an exhaustive exploration of all the diHerent
branches.
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