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Abstract. In this paper, a new learning method is proposed to build
Support Vector Machines (SVM) Binary Decision Function (BDF) of re-
duced complexity, efficient generalization and using an adapted hybrid
color space. The aim is to build a fast and efficient SVM classifier of
pixels. The Vector Quantization (VQ) is used in our learning method
to simplify the training set. This simplification step maps pixels of the
training set to representative prototypes. A criterion is defined to evalu-
ate the Decision Function Quality (DFQ) which blends recognition rate
and complexity of a BDF. A model selection based on the selection of
the simplification level, of a hybrid color space and of SVM hyperpa-
rameters is performed to optimize this DFQ. Search space for selecting
the best model being huge. Our learning method uses Tabu Search (TS)
metaheuritics to find a good sub-optimal model on tractable times. Ex-
perimental results show the efficiency of the method.

1 Introduction

Pixels classification is commonly used as an initial step in color image segmenta-
tion schemes [1, 2] for the extraction of seeds. As for any classification problem,
the choice of an inducer which produces efficient Decision Functions (DF) hav-
ing good generalization performances is critical. Working with machine learning
algorithm for pixel classification involves to take into account not only the recog-
nition rate of the base inducer but also the processing time needed to perform a
single pixel classification. In this paper, we are interested in SVMs and for those
ones the processing time is only related to the complexity of the BDF. When a
DF has an efficient recognition rate, but with a huge computing time per pixel,
it cannot be directly used within the framework of pixel classification, expecially
when processing time is critical. SVMs are powerful classifier having high gen-
eralization abilities [3]. However the BDF provided by SVM has a complexity
which increases with the size of the training set [4, 5]. Therefore using SVMs on
a huge pixel set is not directly tractable for pixel classification. To this aim we



propose a new learning method which makes it possible to use SVMs within the
pixel classification framework. This method uses the VQ principle [6] to simplify
the training set and thus permits to reduce the complexity of the BDFs built
by SVMs. the DFQ for the pixel classification depends on two terms: the DF
recognition rate and the DF complexity. For pixel classification the DF complex-
ity depends on the color space used and the number of Support Vectors (SV)
(cf. section 5). The classical color space representation of a pixel is denoted by
its RGB values, however, depending on the application, another more adapted
color space can be chosen (XY Z,L∗a∗b∗,L∗u∗v∗,. . . ). This choice is difficult and
subjective, therefore it is more reliable to define a hybrid color space [1] which
will be more adapted to the definition of a proper DF. For this reason, it is essen-
tial that our learning method selects a hybrid color space adapted to each BDF
produced by the SVM. This hybrid color space is built by selecting a set of color
components which can belong to any of the different classical color spaces [1].
The mechanism used in our method for the selection of the color components
is similar to that usually used within the features selection framework [7]. For
each BDF produced by SVM, our learning method must thus choose the values
of the SVM hypermarameters, the simplification level of the training set and the
hybrid color space in order to optimize the DFQ. Exhaustive search for model
selection is not tractable, so we decided for this model selection to use TS meta-
heuristic because of it efficiency [8]. The combination of SVM, a simplification
step by using VQ, a hybrid color space, a new criterion for the DFQ and a TS
metaheuristic enables us to define a new learning method which produces in
tractable times a efficient BDF which have a reduced complexity.

2 Support Vector Machines

The SVMs were developed by Vapnik and al. They are based on the structural
risk minimization principle from statistical learning theory [3]. SVMs express
predictions in terms of a linear combination of kernel functions centered on
a subset of the training data, known as support vectors. Given the training
data (xi, yi) , i = {1, . . . ,m}, xi ∈ Rn , yi ∈ {−1,+1}, SVM maps the in-
put vector x into a high-dimensional feature space H through some mapping
functions φ : Rn → H, and builds an optimal separating hyperplane in this
space. The mapping φ(·) is performed by a kernel function K(·, ·) which de-
fines an inner product in H. The separating hyperplane given by a SVM is:
w · φ(x) + b = 0. The optimal hyperplane is characterized by the maximal dis-
tance to the closest training data. The margin is inversely proportional to the
norm of w. Thus computing this hyperplane is equivalent to minimize the follow-
ing optimization problem: V (w, b, ξ) = 1

2‖w‖2+C (
∑m

i=1 ξi) where the constraint
∀m

i=1 : yi [w · φ (xi) + b] ≥ 1 − ξi , ξi ≥ 0 requires that all training examples are
correctly classified up to some slack ξ and C is a parameter allowing trading-off
between training errors and model complexity. This optimization is a convex
quadratic programming problem. Its whole dual [3] is to maximize the following
optimization problem: W (α) =

∑m

i=1 αi −
1
2

∑m

i,j=1 αiαjyiyjK (xi, xj) subject



to ∀m
i=1 : 0 ≤ αi ≤ C ,

∑m

i=1 yiαi = 0. The optimal solution α∗ specifies the
coefficients for the optimal hyperplane w∗ =

∑m

i=1 α∗
i yiφ (xi) and defines the

subset SV of all SVs. An example xi of the training set is a SV if α∗
i ≥ 0 in the

optimal solution. The SVs subset gives the BDF h:

h(x) = sign(f(x)) , f (x) =
∑

i∈SV

α∗
i yiK (xi, x) + b∗ (1)

where the threshold b∗ is computed via the unbounded SVs [3] (i.e. 0 < α∗
i < C).

An efficient algorithm SMO [4] and many refinements [9, 10] were proposed to
solve dual problem. SVM being binary classifiers, several binary SVM classifiers
are induced for a multi-class problem. A final decision is taken from the outputs
of all binary SVM [11].

3 Vector Quantization

The VQ is a classification technique used in the compression field [6]. VQ maps
a vector x to another vector x′ that belongs to m′ prototypes vectors which is
named codebook. The codebook S′ is built from a training set Sa of size m (m >>
m′). The algorithm must produce a set S′ of prototypes x′ which minimizes the
distorsion d′ which is defined by: d′ = 1

m

∑m

i=1 min1≤j≤m′ d(xi, xj) (d(., .) is a
ℓ2 norm). LBG is one of those algorithms [6] which can build this codebook. It is
an iterative algorithm which produces 2k prototypes after k iterates.

4 Hybrid Color Spaces

The pixels of a color image are digitized in (R,G,B) color space. However, this
color space is not always the more appropriate for image processing problems and
especially for pixel classification. There are many different color spaces and each
one presents specific colorimetric, physical and physiological properties [1]. For
our study, we have retained the most commonly used color spaces3: (X,Y,Z),
(L∗, a∗, b∗), (L∗, u∗, v∗), (L1, C,H1), (Y2, Ch1, Ch2), (I1, I2, I3), (H2, S, L2),
(Y3, Cb, Cr). Moreover, in some experiments, it was shown that by combining
color components from several color spaces, it is possible to build a hybrid color
space more suitable than initial ones [1].
Let E be the space which regroups all nE distinct color components from e
different classical color spaces. By definition a hybrid color space Hβ

E is composed
of a set of nβ components from E and the vector β indicates which components
from E are used (i.e. i ∈ [1, . . . , nE ], βi = 1 if the ith color component of the space

E is used in Hβ
E and βi = 0 in the other case). For our study, e = 9, nE = 25 and

E = (R,G,B,X, Y1, Z, L∗, a∗, b∗, u∗, v∗, C,H1, Y2, Ch1, Ch2, I1, I2, I3,H2, S, L2,

Y3, Cb, Cr). Then, the objective of our method is to find a hybrid color space Hβ
E

(the value of β) which improves the DFQ produced by SVM.

3 We have added indices for some color components to differentiate them when being
denoted by the same letter but not being identically computed.



5 Decision Function Quality

The DFQ q for a given model θ depends on the recognition rate RR but also on
the complexity CP of the DF hθ when processing time is critical. The DFQ q can
be modelled by: q(hθ) = RR(hθ)−CP (hθ). When the DF is built by SVM with a

fixed kernel, the complexity of this DF depends on nSV and β (Hβ
E) . We chose

to model CP (hθ) by: CP (hθ) = cp1
log(nSV ) + cp2

log(cost(β)). Constants cp1

and cp2
are weighting coefficients which respectively represent the importance

of the number of SVs and the choice of the hybrid color space (cost(β)) in the
complexity of hθ. The ith color components (i > 3) of a pixel are computed by
linear or not linear transformation of the first three RGB components [1]. The
time cost to compute a given color component is more or less expensive as regards
the kind of transformation (linear or not, software or hardware). Let κi denote
the transformation cost to compute the value of ith color components, the value

of cost(β) linked to the hybrid color space Hβ
E is defined by: cost(β) =

nE
∑

i=1

βiκi.

6 Tabu Search

TS is a metaheuristic for difficult optimization problems. The roots of tabu search
go back to the 1970s; it was first presented in its actual form by Glover [12]. TS
belongs to iterative neighbourhood search methods. The general step, at the it
iteration , consists in searching from a current solution θit a next best solution
θit+1 in the neighbourhood. This new solution may be less efficient than the
previous one, however it avoids local minimum trapping problems. That is why,
TS uses short memory to avoid creating cycles. The use of this short memory is
helpful to avoid moves which might led to recently visited solutions (tabu solu-
tions). Although the basic idea of TS is straightforward, the choice of solutions
coding, objective function, neighbourhood, tabu solutions definition depends on
the application problem.
Our problem is to choose an optimal model (solution) θ which can be repre-
sented by a set of integer variables θ = (θ1, . . . , θn′) with ∀i ∈ [1, . . . , n′], θi ∈
[min(θi), . . . ,max(θi)] (cf. section 7). The objective function q to be optimized
represents the quality of the BDF hθ. One move in TS corresponds to adding
∆ ∈ [−1, 1] to the value of θi, while preserving the constraints of the model
which depends on it. From these constraints, the list of all possible neigh-
boorhood solutions is computed. From these possible solutions the one which
has the best DFQ and which is not tabu is chosen. The set of all Θit

tabu so-
lutions θ which are tabu at the it iteration step of TS is defined as follow:
Θit

tabu = {θ ∈ Ω | ∃i, t′ : t′ ∈ {1, . . . , t}, θi = θit−t
i ∧ θit−t

i 6= θit−t+1
i } with Ω the

set of all solutions and t an adjustable parameter for the short memory used by
TS.

7 New learning method

When studying the SVM algorithm, one notices that processing time for SVM
training quickly grows according to the size of the training base. For SMO algo-



rithms, it is between O(m1,6) and O(m2,1) [4]. Moreover the number of SVs used
by the BDF increases with the problem size. As the objective of our learning
method is to produce a BDF of optimal qualitie (section 5), the increase in the
number of SVs is only interesting if it is linked to a significant improvement of
the recognition rate. The idea of our method is to train a SVM from a small data
set representative of the initial one, in order to reduce the complexity of the BDF
and consequently training time. The LBG algorithm has been used to perform
the simplification (reduction) of the initial data set. Algorithm in Tab. 1 gives the
details of this simplification. As the level of simplification k cannot be easily fixed

Simplification(S,k) SVM-DFQ(θ,Sa)

S′ ⇐ ∅ (Se, Sv) ⇐ Split(Sa)
FOR c = 1 TO nc S′

e ⇐ Simplification(Se,kθ)
| T = {x | (x, c) ∈ S} hθ ⇐ TrainingSVM(S′

e,Kβθ
,Cθ,λθ)

| IF 2k < |T | THEN T ′ ⇐ LBG(T, k) RR ⇐ 1− EmpiricalError(hθ,Sv)
| ELSE T ′ ⇐ T CP ⇐ Complexity(hθ)
| S′ ⇐ S′ ∪ {(x, c) | x ∈ T ′} DFQ ⇐ RR − CP

RETURN S′

Table 1. The Simplification algorithm (left) and the synopsis of SVM DFQ (right)

in an arbitrary way, a significant concept in our method is to regard k as variable.
The optimization of SVM DFQ thus requires for a given kernel function K the
choice of: the level of simplification k, the hybrid color space Hβ

E , the constant
of regularization C and the kernel parameters λ of K. The search of the values
of these variables is called model search. Let θ be a model and kθ, βθ, Cθ, λθ be
respectively the values of previous variables obtained from the model θ. The re-
search of the exact value θ∗ which optimizes the DFQ not being tractable, we de-
cided to use tabu search as metaheuristic. To have a model θ easily usable by the
TS, it must correspond to a vector of n′ integer values. We have used the follow-
ing equivalence: (θ1, . . . , θn′) = (β1, . . . , βnE

, k, C ′, λ′
1, . . . , λ

′
|λ|) with Cθ = 2C′

,

C ′ ∈ [−5, . . . , 15] [9]. From this model θ, the function q which must be optimized
by TS is = q(hθ). The synopsis in Tab. 1 gives the details of the estimation of
DFQ from a model θ and a training set Sa with = q(hθ) = SVM-DFQ(θ, Sa). Se,
Sv which is produced by Split function (|Se| = 2

3 |Sa|, |Sv| = 1
3 |Sa|) respectively

indicates the base used for training SVM and the estimate of the recognition rate.
This dissociation is essential to avoid the risk of overfitting when the empirical er-
ror is used for the estimate of RR. The SVM training step is made by using a SMO
algorithm version present in the library Torch [10]. The kernel functions Kβ used

for training SVM are defined from a distance dβ : dβ(xi, xj) =

√

nE
∑

l=1

βl(xl
i − xl

j)
2.

It is identical to use ℓ2 norm in the hybrid color space Hβ
E for the design of BDF.

For this study, only kernel: KL
β = dβ

2 and KG
β = exp(−dβ

2/λ1
2) are used (in

TS model: λ′
1 ∈ [−10, . . . , 10] and λ1θ = 2λ′

1 [9]).



8 Experiments

We applied our learning method for pixel classification of microscopic images
of bronchial tumors [2]. The training and testing set Sa and St are built from four
ground-thruth microscopic color images (RGB, 574*752 pixels). For each image,
a manual segmentation is made by an expert: background (class 1), cytoplasm
(class 2), nucleus (class 3). As the number of pixels in each class is not balanced
in the images (1: 89%, 2: 7%, 3: 4%), only a subset of the pixels of classes 1 and
2 was selected by random to build Sa and St, so that each class has the same
number of examples (≈ 60000 by class). Three training sets Si

a (testing sets Si
t)

are built from the Sa (St) in order to produce binary decision problems (method
one against all [11]). For each binary problem a model θi and BDF hi

θ is built
with our learning method. To avoid any biais for model selection the recognition
rate of a BDF hi

θ is evaluated from testing set Si
t .

Figures 1(a) and 1(d) illustrate for each BDF hi
θ with a kernel KL

β (optimal

value of C is searched) the evolution of the recognition rate and of the number
of SVs according to the level of simplification k. That is done for all the classical
color spaces retained. One can notice that improvement of RR is obtained only
for small values of k. Moreover, the choice of a color space which optimizes the
DFQ depends to the trade-off between complexity and recognition rate. These
remarks corroborate the choices which were made in the definition of our learn-
ing method.
Tables 3 illustrate results obtained with our learning method by using a ker-
nel KL

β and KG
β . Table 2 gives the values of

constants for all the configurations used. The
column κi represents two cases: the first one
is a microship transformation (κi = 1) and
the second one is a software transformation
(κi = Ti/T with Ti the time to compute the
color component i and T =

∑

i∈[1,...,nE ] Ti).

configuration cp1
cp2

κi

A 0.0001 0.01 1
B 0.01 0.01 1
C 0.03 0.03 1
D 0.01 0.01 Ti/T

Table 2: values of constants

In tables 3 HCS indicates hybrid color spaces used by the BDF, ∆t the training
time, and in column DF is mentioned after θ the configuration which is used.
These results show that our learning method produces BDF with reduced com-
plexity and efficient in generalization. The choice of a specific hybrid color space
for each BDF generally improves the recognition rate. The improvement with
the use of kernel KL

β is very significant (≈ 5%) with h2
θ. For this problem, the

choice to use a kernel KG
β in comparison with KL

β does not improve the recog-

nition but increases the BDF complexity. Indeed, h(x) = dβ(x∗, x)
2

+ b∗ with
x∗ =

∑

i∈SV α∗
i yixi when kernel KL

β is used, then the number of SVs does not

penalize the BDF complexity. However, although it seems logical to choose zero
or very low values for cp1

, results (Tab. 3: left, configuration A and B) show a
significant increase in time for the selection of a model without significant im-
provement of the recognition rate. Those results (Tab. 3: configuration B and
D) also show that the uses of κi constants allow to select a hybrid color space
according to its cost. In particular, in the case of software implementation the



R, G, B components are mostly used and those requiring a nonlinear transfor-
mation lesser used, but the recognition rate still is as efficient.
As actually the whole process of microscopic images segmentation is software
performed, then we have used the BDFs produced with the configuration D and
a kernel KL

β .
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Fig. 1. Recognition rate and number of SVs in function of simplification level

9 Conclusions

A new learning method is proposed to build SVM binary decision functions
which are efficient for pixel classification. This learning method produces BDF
whose advantages for pixel classification problems are threefold: high general-
ization ability, low complexities and definition of a adapted hybrid color space.
Future works will have to test this method on other pixel classification prob-
lems. It will also have to check the influence of several combination schemes of
BDF, especially when the number of classes is higher. Later, it will also have
to quantify the influence of other simplification methods and to compare other
metaheuristics for model selection.



DF RR nSV HCS k ∆t

h1

θ,A 96.44% 2 ZCr 2 144

h2

θ,A 85.99% 48 Bb∗L2H1CH2SCb 5 26574

h3

θ,A 90.48% 63 Y1L
∗a∗u∗ 6 29540

h1

θ,B 96.50% 2 Cr 2 140

h2

θ,B 84.98% 18 L∗b∗u∗CI2S 4 2352

h3

θ,B 89.79% 2 Gu∗Cb 1 147

h1

θ,C 96.50% 2 Cr 2 140

h2

θ,C 82.82% 3 SCr 1 179

h3

θ,C 89.73% 2 v∗ 1 140

h1

θ,D 95.66% 2 R 2 151

h2

θ,D 83.53% 2 RBb∗SL2Cr 2 397

h3

θ,D 90.09% 4 GB 2 197

DF RR nSV HCS k ∆t

h1

θ,B 96.08% 5 RH1 3 865

h2

θ,B 85.90% 10 RXa∗H1Y2Y3 3 1239

h3

θ,B 90.43% 4 BY u∗v∗ 2 708

h1

θ,C 95.66% 2 R 1 482

h2

θ,C 85.17% 10 RH1Y2Y3 3 1223

h3

θ,C 89.47% 2 b∗ 0 434

h1

θ,D 95.66% 2 R 1 440

h2

θ,D 85.78% 10 RY1Ch1Y3Cr 3 1174

h3

θ,D 90.45% 5 GB 2 409

Table 3. Results with a microscopic image pixels set by using a kernel KL
β (left) or a

kernel KG
β (right)

References

1. Vandenbroucke, N., Macaire, L., Postaire, J.G.: Color image segmentation by pixel
classification in an adapted hybrid color space: application to soccer image analysis.
Comput. Vis. Image Underst. 90 (2003) 190–216

2. Meurie, C., Lebrun, G., Lezoray, O., Elmoataz, A.: A comparison of supervised
pixels-based color image segmentation methods. application in cancerology. In:
WSEAS Transactions on Computers. Volume 2. (2003) 739–744

3. Vapnik, V.N.: Statistical Learning Theory. Wiley edn. New York (1998)
4. Platt, J.: Fast training of support vector machines using sequential minimal opti-

mization, advances in kernel methods-support vector learning, MIT Press (1999)
185–208

5. Lebrun, G., Charrier, C., Cardot, H.: SVM training time reduction using vector
quantization. In: ICPR. Volume 1. (2004) 160–163

6. Gersho, A., Gray, R.M.: Vector Quantization and Signal Compression. Kluwer
Academic (1991)

7. Kudo, M., Sklansky, J.: Comparison of algorithms that select features for pattern
classifiers. In: Pattern Recognition. Volume 33. (2000) 25–41

8. Hao, J.K., Galinier, P., Habib, M.: Métaheuristiques pour l’optimisation combi-
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