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Abstract. In this paper, a new learning method is proposed to build
Support Vector Machines (SVMs) Binary Decision Functions (BDF) of
reduced complexity and efficient generalization. The aim is to build a
fast and efficient SVM classifier. A criterion is defined to evaluate the
Decision Function Quality (DFQ) which blendes recognition rate and
complexity of a BDF. Vector Quantization (VQ) is used to simplify the
training set. A model selection based on the selection of the simplification
level, of a feature subset and of SVM hyperparameters is performed to
optimize the DFQ. Search space for selecting the best model being huge,
Tabu Search (TS) is used to find a good sub-optimal model on tractable
times. Experimental results show the efficiency of the method.

1 Introduction

Data mining is considered as one of the challenging research fields of the 21th

century. Extracting knowledge from raw data is a difficult problem which cov-
ers several disciplines: Artificial Intelligence, Machine Learning, Statistics, Data
Bases. Machine learning methods aim at providing classification methods which
induce efficient decision functions. Among all possible inducers, SVMs have par-
ticular high generalization abilities and became very popular these last years.
However decision functions provided by SVMs have a complexity which increases
with the training set size [1,2,3]. Therefore, time processing with SVMs on huge
datasets is not directly tractable. In recent years, there has been a lot of interest
to improve learning methods using SVMs. One way is to optimize the SVM al-
gorithm [1,4] to solve the associated quadratic problem. Other approaches use a
simplification step to reduce the training set size [2,3,5,6,7]. For learning meth-
ods using SVM, model selection is critical. Many studies have shown that SVM
generalization efficiency depends on the choices of SVMs parameters [8,9,10].
Other studies [11] have shown that multiclass SVMs are efficient if an efficient
model selection is performed for each involved binary SVM. Therefore, as re-
gards these considerations, new approaches aim at merging simplification step
and model selection [5,3]. Although the SVM algorithms are lesser sensitive to
curse of dimensionality [12], dimension reduction techniques can improve the
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efficiency of SVMs [8,10,12]. Our approach aims at unifying feature selection,
simplification of training set and hyperparameters tuning as a complete model
selection in order to produce efficient and low complexities BDFs with SVMs.
For this new model selection method, a criterion named DFQ has been defined
which takes into account the recognition rate of the BDF but also the number of
support vectors (SV) and the number of features selected. For the simplification
of the training set, the LBG algorithm used in vector quantization field [13] has
been retained because it can produce good prototypes representing the initial
dataset. Moreover the simplification level is controled by a single integer pa-
rameter whose values are few and can range from extreme simplification with
only one prototype by class to no simplification. However, the proposed learning
method is sufficiently general to be extended to other simplification methods. To
have a proper tuning of hyperparameters and an accurate selection of relevant
features, an adapted TS method is proposed for SVM model selection since usual
SVM model selection have local minima [14]. Moreover TS has proved its suit-
ability for such model selection problems [15,16]. The section 2 gives overviews
and definitions used by our model selection method. The section 3 describe this
new method and section 4 gives experimental results with it.

2 Overviews and Definitions

Support Vector Machines (SVM): SVMs were developed by Vapnik accord-
ing to structural risk minimization principle from statistical learning theory [17].
Given training data (xi, yi), i = {1, . . . , m}, xi ∈ R

n , yi ∈ {−1, +1}, SVM maps
an input vector x into a high-dimensional feature space H through some map-
ping function φ : R

n → H, and constructs an optimal separating hyperplane
in this space. The mapping φ(·) is performed by a kernel function K(·, ·) which
defines an inner product in H. The optimal solution α∗ of corresponding convex
quadratic programming problem [17] specifies the coefficients for the optimal
hyperplane w∗ =

∑m
i=1 α∗

i yiφ (xi). The SV subset (i.e., α∗
i > 0) gives the BDF

h(x) = sign(f(x)) with f (x) =
∑

i∈SV α∗
i yiK (xi, x) + b∗ where the threshold

b∗ is computed via the SVs [17]. SVMs being binary classifiers, several binary
SVMs classifiers are combined to define a multi-class SVM scheme [11].

Vector Quantization (VQ): VQ is a classification technique used in the com-
pression field [13]. VQ maps a vector x to another vector x′ that belongs to
m′ prototypes vectors which is named codebook. The codebook S′ is built from a
training set St of size m (m >> m′). The algorithm must produce a set S′ of pro-
totypes which minimizes the distorsion d′ = 1

m

∑m
i=1 min1≤j≤m′ d(xi, xj) (d(., .)

is a L2 norm). LBG is an iterative algorithm [13] which produces 2k prototypes
after k iterates.

Decision Function Quality (DFQ): We consider that the DFQ of a given
model θ depends on the recognition rate RR but also on the complexity CP of
the DF hθ when processing time is critical. Let q(hθ) = RR(hθ)−CP (hθ) be the
DFQ. For SVMs the complexity of the DF depends on the number of both SVs
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and selected features. The empirical model we propose to model the complexity
of a SVM BDF is: CP (hθ) = cp1 log2(nSV ) + cp2 log2(cost(β)). β is a boolean
vector of size n representing selected features. Constants cp1 and cp2 fix the
trade-off between classification rate improvement and complexity reduction. Let
κi denote the cost for the extraction of the ith feature, the value of cost(β) linked
to the subset of selected features is defined by: cost(β) =

∑
βiκi. When these

costs are unknown, κi = 1 is used for all features. Strictly speaking, a doubly of
the number of SVs (extraction cost) is accepted in our learning method if it is
related to a recognition rate increase of at least cp1 (repectively cp2).

Tabu Search (TS): TS is a metaheuristic for difficult optimization prob-
lems [15]. TS belongs to iterative neighbourhood search methods. The gen-
eral step, at the it iteration, consists in searching from a current solution θit

a next best solution θit+1 in a neighborhood. This new solution may be less
efficient than the previous one, however it avoids local minimum trapping prob-
lems. That is why, TS uses short memory to avoid moves which might led to
recently visited solutions (tabu solutions). TS methods generally use intensi-
fication and diversification strategies (alternately). In a promising region of
space, the intensification allows extensive search to optimize a solution. The
diversification strategy enables large changes of the solution to find quickly an-
other promising region. Although the basic idea of TS is straightforward, the
choice of solution coding, objective function, neighborhood, tabu solutions defin-
ition, intensification and diversification strategies, all depend on the application
problem.

3 New Model Selection Method

The idea of our method is to produce fast and efficient SVM BDF using few
features and SVs. A SVM is therefore trained from a small dataset S′

t repre-
sentative of the initial training set St in order to reduce the complexity of the
BDF and consequently training time. The LBG algorithm has been used to per-
form the simplification (reduction) of the initial dataset. Algorithm in Table 1
gives the details of this simplification1. As the level of simplification k cannot
be easily fixed in an arbitrary way, a significant concept in our method is to
regard k as variable. The optimization of SVM DFQ thus requires for a given
kernel function K the choice of: the simplification level k, the feature subset
β, the regularization constant C and kernel parameter σ. The search of the
values of those variables is called model selection. Let θ be a model and kθ,
βθ, Cθ, σθ be respectively the values of all the variables to tune. The search
for the exact θ∗ which optimizes the DFQ not being tractable, we decided to
use tabu search as metaheuristic. Let the model θ be a vector of n′ integer
values2 with (θ1, . . . , θn′) = (β1, . . . , βn, k, C′, σ′). A move for TS method is
1 To speed up model selection, at each new value of k, the simplification result is

stored for future steps which might use the same simplification level.
2 Cθ = 2C′/2 with C′ ∈ [−10, . . . , 20] (inspired by the grid search method [4]).
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Table 1. Algorithm synopsis

Simplification(S,k) SVM-DFQ(θ,Sl)
S′ ⇐ ∅ (St, Sv) ⇐ Split(Sl)
FOR c ∈ {−1, +1} S′

t ⇐ Simplification(St,kθ)
| T = {x | (x, c) ∈ S} hθ ⇐ TrainingSVM(S′

t,Kβθ
,Cθ,σθ)

| IF 2k < |T | THEN T ′ ⇐ LBG(T, k) RR ⇐ mcorrect
−1

2m−1
+

mcorrect
+1

2m+1

| ELSE T ′ ⇐ T CP ⇐ Complexity(hθ)
| S′ ⇐ S′ ∪ {(x, c) | x ∈ T ′} q(θ) ⇐ RR − CP

RETURN S′

Intensification(θit) Diversification(θit)
IF q(θit) > ηpromising · q(θbest−known) δ ⇐ nfailure+1

THEN Θnext ⇐ ExtensiveSearch(θit) i ⇐ SelectEligibleVariable
ELSE Θnext ⇐ FastExtensiveSearch(θit) Θnext ⇐ TwoMove(θit, i, δ)

θit+1 ⇐ BestNotTabu(Θnext) θit+1 ⇐ BestNotTabu(Θnext)
IF q(θit+1) > q(θintensification ) IF q(θit+1) > q(θdiversification )
THEN THEN

θintensification ⇐ θit+1 θdiversification ⇐ θit+1

nWithoutImprove ⇐ 0 ndiversification ⇐ ndiversification + 1
ELSE IF ndiversification > nmax · nfailure

nWithoutImprove ⇐ nWithoutImprove + 1 THEN
IF nWithoutImprove > nmax θit+1 ⇐ θdiversification
THEN stategy ⇐ Intensification

nfailure ⇐ nfailure + 1
stategy ⇐ Diversification

IF nfailure > nmax
failureTHEN STOP

to add or substract δ (δ = 1 for a basic move in intensification strategy) to
one of those integer variables (i.e., θit+1

i = θit
i ± δ). The synopsis in Table 1

gives the details of the estimation of DFQ q(θ) from a model θ and a learn-
ing set Sl with q(θ) ≡ SVM-DFQ(θ, Sl) the objective function to optimize. St,
Sv sets produced by Split function (|St| = 2

3 |Sl|, |Sv| = 1
3 |Sl|) respectively

indicate the bases used for SVM simplification step (training dataset) and for
recognition rate estimation (validation dataset). This dissociation is essential to
avoid the risk of overfitting when empirical estimation is used. For a given class
y ∈ {+1, −1}, my represents the number of examples and mcorrect

y the correctly
identified ones. This evaluation is more adapted when unbalanced class data are

used. The kernel functions used is : Kβ(xi, xj) = exp
(

−
n∑

l=1
βl(xi,l − xj,l)2/σ2

)

with xi,l the l th feature of example i. Feature selection is embedded in kernel
functions by using β binary vectors (σ = 2σ′/2 and σ′ have the same range
that C′ in θ representation). The model selection TS algorithm has to deal with
two kinds of problems. Firstly, testing all moves between two iterations with a
great number of features can be time expensive. In particular, it is a waste of
time to explore moves which are linked to features when the actual solution is
not sufficiently promising. Therefore, intensification strategy focusing on moves
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which are only linked to SVM hyperparameters or simplification level is more
efficient to discover fastly new promising regions. Secondly, it is difficult for TS
method to quickly escape from deep valleys of poor solutions when only using
the short memory and resulting not taboo solutions. Using more diversified so-
lutions can overcome this problem. This is dealt by increasing step size (δ > 1)
of moves and by forcing to use all types of moves (except feature selection moves
for previous reason) in diversification strategy. Table 1 gives details of these
two strategies. In intensification sysnopsis, ExtensiveSearch explores all eli-
gible basic moves, whereas FastExtensiveSearch explores only eligible basic
moves which are not related to feature selection (i.e. changing the value of β).
ηpromising controls when the actual solution is considered as sufficiently promis-
ing. The set of all solutions θ which are tabu at the it iteration step of TS is:
Θit

tabu = {θ ∈ Ω | ∃ i, t′ : t′ ∈ [1, . . . , t], θi �= θit−1
i ∧ θi = θit−t′

i } with Ω the
set of all solutions and t an adjustable parameter for the short memory used by
TS (for experimental results t =

∑n′

i=1 max(θi) − min(θi)). BestNotTabu corre-
sponds to the best solution on all possible moves from θit which are not tabu
at this iteration. nmax is the maximum number of intensification iterations for
which no improve of the last best intensification solution (θintensification) are
considered as failure of the intensification strategy. In diversification sysnopsis,
an eligible variable (those which do not have a relationship with features) is se-
lected (SelectEligibleVariable) and a jump of ±δ is performed by modifying
the random selected variable in the actual solution. There are the two only ex-
plored moves (TwoMove) and this forces diversification. The jump size increases
with the number of successive failures (nfailure) of the intensification strategy
in order to explore more and more far regions. During the diversification iter-
ations, the best visited solution is stored (θdiversification) and selected as the
start solution for the next intensification step. At any time of TS exploration,
if aspiration is involved, strategy automatically switch to intensification and the
number of failures is reseted (nfailure = 0). The TS is stopped when the number
of failures is higher than a fixed value and the best known solution is returned.

4 Experimental Results

We used the following datasets described in Table 2 (m, nc and n are respec-
tively the number of: examples, classes and features). Adults and Shuttle come
from UCI repository [18], Web from [1] and ClassPixels from [7]. Learning and
test sets contain respectively 2/3 and 1/3 of initial datasets. Test sets are used

Table 2. Datasets description

bases m nc n
Shuttle 58000 6 9
Adults 45222 2 103
Web 49749 2 300
ClassPixels 224636 3 27

to estimate recognition rate (RR) after model
selection. For multiclass classification prob-
lem, the one-versus-all decomposition scheme
is used. It produces nc (number of class) bi-
nary classification problems [11]. For each one
a model selection is realized. Figures 1(a)
to 1(c) illustrate model selection experi-
ments with Gaussian kernel for different
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Fig. 1. Best recognition rate (a) and number of SVs (b) of BDF for a given simplifi-
cation level k. Grid search method are used to select best model (C,σ). (c) gives total
training time in seconds for grid search at each simplification level k.

simplification levels. Figure 1(a) shows that the level for which increasing train-
ing set size does not significantly improves recognition rate depends on dataset
(i.e. importance of redundancy in dataset). Figure 1(c) shows that direct training
with the whole dataset is time expensive for model selection. Moreover, complex-
ity of decision function (fig. 1(b)) is directly linked to training set size of this
one.

The objective of our learning method is to automatically select different pa-
rameters for producing SVM BDF which optimize the DFQ. However new pa-
rameters have been introduced and this can be problematic. Next experiments
show how to deal with them. Our learning method is applied3 on Adults dataset
and table 3 (top) shows that an increase of ηpromising reduces the learning time
without reducing quality of solution. Experiments with other datasets gave the
same results and ηpromising can be fixed at 99%. Similar experiments have shown
that a good compromise between learning time and quality of produced solution
is nmax = 5 and maximum of accepted failure nmax

failure = 5.
Tables 3 (middle and bottom) illustrates the complexity evolution obtained

with our learning method by using different penalties (cp1 and cp2). Results
show that higher penalties significantly reduce the number of SVs, the number
of selected features and learning time while the recognition rate decrease is low
if penalty is not too high. Of course good compromise depends on the considered
application. Another interesting observation for a multiclass SVM scheme is that
selected simplification levels could be different for each binary SVMs (Shuttle
set in tab. 3). If training time are compared to the classical grid search methods
without simplification of training set (fig. 1(c)), training time is greatly reduced
(except for very low penality and feature selection) whereas our method preforms
in addition feature and simplification level selection. Let nk be the number of
solutions θ examined by TS for which simplification level is equal to k. Global
SVM training time of our method is O(

∑
nk(2k)γ) with γ ≈ 2. The examination

of our method shows that nk decreases while k increases. This effect increases
when cp values increases and explains the efficient training time of our method. In

3 Starting solution is: k = �log2(m/nc)/3�, C′ = 0, σ′ = 0 and nfeature = n.
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Table 3. Top: Influence of ηpromising for model selection (Adults dataset, cp1 = cp2 =
10−3). Middle: Trade off between recognition rate and complexity (Adult(A) or Web(W)
dataset, ηpromising = 99%). Bottom: Models selection for one-versus-all scheme (Shuttle
dataset, ηpromising = 99%). For all tables Tlearning is the learning time for model selec-
tion in seconds, nfeature is the number of selected features, DFQ is computed on the
validation dataset (value of RR in DFQ criterion) and selected model RR is evaluated
on a test dataset.

ηpromising Tlearning k log√
2(C) log√

2(σ) nVS nfeature RR DFQ
99.5 % 6654 6 0 0 50 9 79.3% 0.789
99.0 % 9508 1 -3 6 4 22 81.7% 0.803
98.0 % 160179 4 0 8 18 20 81.1% 0.804
95.0 % 195043 0 10 5 2 41 81.9% 0.803
0.0 % 310047 12 1 5 3286 44 81.8% 0.805

with feature selection without
S cp1 = cp2 Tlearning k nVS nfeature RR DFQ Tlearning k nVS RR DFQ
A 0.0100 5634 0 2 44 81.5% 0.762 1400 0 2 79.4% 0.789
A 0.0020 16095 4 12 44 81.9% 0.793 2685 3 6 79.9% 0.800
A 0.0001 127096 10 764 55 81.8% 0.817 7079 13 5274 81.7% 0.811
W 0.1000 4762 1 3 44 82.2% 0.598 1736 1 3 84.1% 0.695
W 0.0100 25693 2 5 149 87.3% 0.846 4378 5 39 87.5% 0.835
W 0.0010 197229 9 506 227 89.7% 0.881 18127 11 730 90.4% 0.898

cp1=cp2= 0.01 cp1=cp2= 0
BDF Tlearning k nVS nfeature RR Tlearning k nVS nfeature RR

1-vs-all 207 4 7 2 99.85% 38106 15 127 3 99.83%
2-vs-all 67 0 2 1 99.93% 14062 10 20 3 99.95%
3-vs-all 45 0 2 1 99.94% 7948 11 38 3 99.95%
4-vs-all 152 5 9 2 99.91% 31027 14 63 4 99.94%
5-vs-all 44 3 2 1 99.98% 36637 7 13 2 99.96%
6-vs-all 113 2 5 1 99.97% 394 6 24 6 99.97%

(a) Microscopic image. (b) Expert segmentation. (c) Pixel classification.

Fig. 2. Pixel classification (RR = 90.1%) using feature extraction cost

our last experiments, pixel classification is performed for microscopical images.
On such masses of data, the processing time is critical and we can assign a weight
to each color feature of pixel: let κi = n · Ti/T be the weight with Ti the time
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to extract the ith color feature (T =
∑

i∈[1,...,n] Ti). With our model selection
method, pixel classification (fig. 2) can be performed with only 7 SVs and 4 color
features (see [7] for further details).

5 Conclusions and Discussions

A new learning method is proposed to perform efficient model selection for SVMs.
This learning method produces BDFs whose advantages are threefold: high gen-
eralization abilities, low complexities and selection of efficient features subsets.
Moreover, feature selection can take into account feature extraction cost and
many kinds of kernel functions with less or more hyperparameters can easily
be used. Future works will deal with the influence of other simplification meth-
ods [2,6,5]. In particular, because QV methods can be time expensive with huge
datasets.
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