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ABSTRACT

A tool for diagnosis assistance by automatic segmentation

of microscopic cellular images is introduced. This method

is based on an automatic segmentation technique combining

(with the Dempster-Shafer rule) the results obtained by Sup-

port Vector Machines (SVM) applied within different color

spaces. This combination is performed by integrating uncer-

tainties and redundancies for each color space. Those uncer-

tainties are computed as a posteriori probabilities according

to the SVM obtained results. An improvement of the final

segmentation quality is performed by taking into account the

inconsistencies of several pixel classifications.

1. INTRODUCTION

Microscopic image analysis is an important task in cytopathol-

ogy for the detection of abnormal cells in order to establish a

diagnosis. Actually, cells are evaluated by a technician during

a screening stage. Yet the visual screening stage is a very dif-

ficult task and the low number of abnormal cells with regards

to the great number of cells implies that the technician con-

centrates hard. In that case, there can be false-negative cases

due to the subjective aspect of screening. To avoid this, one

approach consists in helping the technician by developing a

semi-automatic screening system to confirm the visual analy-

sis. Such a system is deeply linked to the used segmentation

scheme. For microscopic images containing cells, the major

problem lies in the spatial and the colorimetric configuration

of the nuclei and the cytoplasm. A particular segmentation

scheme can perform well for several images but not for oth-

ers. This is due to the fact that usually only one scheme is

applied in order to obtain a segmentation result as close as

possible to the ground truth.

Yet another way can be investigated: the combination of

obtained results from different schemes. The following pro-

cess is proposed: different segmentation schemes based on

pixel classification methods are firstly used through differ-

ent colorimetric transformation. The selected color spaces

are RGB, L∗a∗b∗, YUV , Y CbCr and HSL. Then classified

maps are fused to obtain a final classified image.

2. FUSION OF CLASSIFIED IMAGES.

Fig. 1. Synopsis of the proposed segmentation scheme in

which pk represents the a posteriori probability computed

within the k-th color space.

Figure 1 shows the proposed segmentation scheme. The

first step is to classify pixels through the five selected color

spaces. Then, a posteriori probabilities are computed and can

be interpreted as a confidence measure of the classification

of a given pixel. The second step is to categorize pixels in

1) coherent pixels when the classifiers select the same class,

and 2) incoherent pixels when at least one classifier response

differs from the others. Only incoherent pixels are processed

through a fusion method to select their final class. The final

segmentation map results from the union of the two pixel sets.

2.1. Segmentation by pixel classification.

From all existing segmentation schemes, an SVM-based tech-

nique has been selected due to high classification rates ob-

tained in a previous work [1].



2.1.1. SVMs Principle

The SVMs developed by VAPNIK ET AL. are based on the

structural risk minimization principle from statistical learn-

ing theory [2]. SVMs express predictions in terms of a linear

combination of kernel functions centered on a subset of the

training data, known as support vectors (SV). Given the train-

ing data S = {(xi, yi)}i={1,...,m}, xi ∈ Rn , yi ∈ {−1, +1},

SVM maps the input vector x into a high-dimensional fea-

ture space H through some non linear mapping functions φ :
Rn → H, and builds an optimal separating hyperplane in

that space. The separating hyperplane given by a SVM is:

w · φ(x) + b = 0. The optimal hyperplane is characterized by

the maximal distance to the closest training data. The margin

is inversely proportional to the norm of w. An efficient algo-

rithm SMO [3] and many refinements were proposed to solve

dual problem.

2.1.2. Computation and use of the a posteriori probabilities

Since the SVMs are binary classifiers, the resolution of a

multi-class problem is achieved through a combination of bi-

nary problems [4]. In our case, three decision functions are

created to perform the classification process in three classes

{nucleus, background, cytoplasm} corresponding to their one

versus all discrimination. Yet, SVMs do not provide clas-

sification a posteriori probabilities. Instead of estimating the

class-conditional densities p(f |y), a parametric model is used

to fit the posteriori p(y = 1|f) where f represents the un-

calibrated output value of SVMs. PLATT [5] has proposed a

method to compute the a posteriori probabilities from the ob-

tained SVM parameters. The suggested formulae is based on

a parametric form of a sigmod as:

p(y = 1|f) =
1

1 + exp (Bf + C)
, (1)

where the parameters B and C are fit using maximum likeli-

hood estimation.

A set of segmented images representing a ground truth

(i.e., a reference image) is used as training base. Each of the

three decision functions is trained on each of the five color

spaces. In that case, five segmentation maps are generated

where each pixel is associated to an a posteriori probability

pk for each class. This probability can be interpreted as a

belief measure associated to each class and each color space

in conjunction. Each segmentation map (three for each color

space) can be considered as an information source that can be

imprecise and uncertain. The main idea consists in combin-

ing these different sources using the theory of evidence (also

known as the Dempster-Shafer theory or the belief functions

theory) [6, 7], that yields on the one hand to combine infor-

mation from many sources, and on the other hand to process

uncertain information.

2.2. Incoherent pixel processing.

In order to generate the final segmentation map, the intersec-

tion of the obtained maps within each one of the trial color

spaces is achieved. Only incoherent pixels are processed us-

ing the theory of evidence.

2.2.1. Elements of theory of evidence.

Let Ω = {ω1, . . . , ωN} be the set of N final classes possible

for an incoherent pixel, called the frame of discernment. In

our study, N = 3 and Ω corresponds to the three final classes

{ωb, ωc, ωs} respectively representing the background of the

image, the cytoplasm and the nucleus. Instead of narrowing

its measures to the set (as performed by the theory of proba-

bility constrained by its additivity axiom), the theory of evi-

dence extends on the power set Ω, labeled as 2Ω, the set of the

2N subsets of Ω. Then a mass function m is defined and rep-

resents the belief allowed to the different states of the system,

at a given moment. This function is also known as the initial

mass function m(·) defined from 2Ω in [0, 1] and coroborat-

ing:
∑

A⊆Ω

m(A) = 1 et m(∅) = 0 (2)

where m(A) quantizes the belief that the search class belongs

to the subset A ⊆ Ω (and to none other subset of A). Subsets

A such as m(A) > 0 are referred to as focal elements. A
represents either a singleton ωj or a disjunction of hypothe-

sis. In the case where the set of hypothesis is exhaustive and

exclusive, the mass of the empty set is equal to 0.

Two initial mass functions m1 and m2 representing re-

spectively the information providing from two independent

sources, can be combined according to Dempster’s rule [6]:

m(A) =

∑

B∩C=A m1(B)m2(C)

1 − K
, ∀A ∈ 2Ω

A 6= ∅.
(3)

K is known as the conflict factor and represents the discrep-

ancy between the two sources. It corresponds to the mass of

the empty set K =
∑

B∩C=∅ m1(B)m2(C). One notes that

Dempster’s combination, also known as orthogonal sum and

written as m = m1 ⊕ m2, is commutative and associative.

After performing the combination, the decision associ-

ated to the most “probable” element Ω has to be quantified.

Among the existing rules of decision, the most commonly

used is the maximum of the pignistic probability. This de-

cision rule, introduced by Smets [8] uses the pignistic trans-

formation that allows to distribute the mass associated to a

subset of Ω over each one of its elements:

BetP(ω.m) =
∑

ω∈A⊆Ω

m(A)

|A|
, ∀ω ∈ Ω (4)

|A| is the cardinal of A. The decision is executed from the



elements of Ω the highest value of which is:

ω∗ = Arg

{

max
ω∈Ω

[BetP(ω, m)]

}

. (5)

2.2.2. Mass function design

One of the main drawbacks of the theory of evidence is the

design of mass functions: the quality of the fusion process de-

pends on the quality of the mass function. Among all existing

modelisations, the one proposed by DENŒUX [9] has been

retained in our study on account of its integration of both the

distance to the neighboors and different criteria of neighbor-

hood (e.g., mean luminance, emergence,...) in its definition.

Thus the mass m({ωj}) is defined as a decreasing function of

the distance d between the pixel to classify and the barycenter

of the class:

{

m(ωl) = α exp (−γld
2)

m(Ω) = 1 − m(ωl)
(6)

where 0 < α < 1 is a constant computed from the obtained a

posteriori probabilities provided by the SVMs output for the

class ωl within the trial color spaces. In that case, α = pk(ωl).
γl depends on the class ωl and is computed by minimization

of an error criterion using the EM algorithm.

The five initial mass functions (mk)k∈[1,...,5] are gener-

ated after computing the q candidate regions to the fusion

process and before the decision induced by the majority vote.

Thus, considering one segmentation map, one pixel associ-

ated to one class from {ωb, ωc, ωs} can be associated to a sub-

set of classes corresponding at most to Ω. In order to generate

such a subset, the affectation constraint has to be loosened.

One way to perform that is to generate an interval computed

from the maximum value of the a posteriori probabilities to

generate the subset A such as:

A = {ωl ∈ Ω/ max(pk(ωl))−δk ≤ pk(ωl) ≤ max(pk(ωl))}
(7)

where k ∈ {1, . . . , 5} and δk is an ad-hoc constant depend-

ing on the perceptual sensitivity of each one of the five trial

color spaces. All the classes for which their probabilities are

included within this new interval are considered as candidates

for classification during the fusion process.

The five mass functions yield to take into account the as-

sociated uncertainty to each one of the segmentation maps.

Thus, close classes are brought together in the same focal ele-

ment, and the final decision is taken only after combining the

obtained results from other projections.

In our study, two distance formulas have been investi-

gated: 1) the Euclidean and 2) the Mahalanobis given by

d =
√

(x − µl)T
∑−1

l (x − µl) where µl represents the mean

vector and
∑−1

l the inverse covariance matrix associated to

the hypothesis ωl.

3. EXPERIMENTAL RESULTS

3.1. Segmentation Quality Measure

When a ground truth image is available, quality measures usu-

ally integrate at least a factor to take into account the region

size and another one to compute the recovery rate between

the regions Ri of the segmented image I and the regions Vj

of the groundtruth image J . Among all the proposed quality

metrics, the one developed by MARTIN [10] has been used

because this metric is insensitive to the granularity variation

levels induced by the manual segmentation produced by dif-

ferent experts. Indeed, even if two human observers have the

same perceptual organization of an image, they may choose

to segment it at different levels (e.g., a bird can be segmented

as only one object or as a set of many sub-objects containing

the beak and the rest of the body, and so on.). This measure

is based on the computed error E(s) on each pixel as:

E(s) =
card(Vj\Ri)

card(Vj)
and E′(s) =

card(Ri\Vj)

card(Ri)
. (8)

The disimilarity measure is provided by the local consistency

error as the segmentation quality measure:

LCE(I, V ) =
1

h × w

∑

s

min{E(s), E′(s)} (9)

where h and w respectively denotes the image height and

width.

3.2. Results

The proposed technique has been applied to an image database

containing 50 microscopic cell images. Figure 2(b) shows the

incoherent pixels obtained after the intersection of the seg-

mentation maps through colorimetric transformations. One

can observe that major disagreements are very close to cyto-

plasm and nuclei.

(a) Original Image. (b) Map of incoherent pixels.

Fig. 2. Location of the incoherent pixels after intersecting the

five segmentation maps.

Table 1 presents 1) the mean (in percentage) of correctly

and incorrectly classified pixels and 2) the mean (in percent-

age) of incoherent pixels for all color spaces and for the best



one, i.e, the L∗a∗b∗ coordinates system. One can observe

that, for L∗a∗b∗, only a limited percentage of pixels have

been incoherently classified (about 3.77%). The segmentation

quality gain can only be obtained from these pixels. Actually,

even if 86.52% pixels have been correctly classified, 9.1% re-

main incorrectly classified. This misclassification cannot be

corrected at this stage since all classifiers have selected the

same but wrong class.

All color spaces

correct incorrect incoherent

87.13 ± 6.12 9.4 ± 5.32 3.47 ± 1.13

L
∗

a
∗

b
∗ color space

correct incorrect incoherent

87.52 ± 5.97 9.1 ± 4.21 3.38 ± 0.96

Table 1. Mean of correctly, incorrectly and incoherently clas-

sified pixels with respect to the ground truths for all images

and for all color spaces (first part) and the best color space

(2nd part).

Used method Mean of the RR Mean of MQ

SVM 87.52 ± 5.97 0.43 ± 0.03

Combined SVMs (d1) 87.67 ± 5.62 0.39 ± 0.03

Combined SVMs (d2) 88.12 ± 5.43 0.38 ± 0.04

Table 2. Mean of 1) the Recognition Rate (RR) and 2) of the

Martin Quality (MQ) measure for the SVM-based segmenta-

tion scheme and the proposed one integrating 1) the Euclidean

distance (d1) and 2) the Mahalanobis one (d2).

Table 2 shows the mean of the obtained correct classifi-

cation rates from the database from 1) SVMs, the proposed

combination method using 2) the Euclidean distance (d1) and

3) the Mahalanobis distance (d2). SVMs have been trained

on a training database where the 20 images are different from

those contained within the test database. From the obtained

results, one can state that the combination process used in the

proposed segmentation scheme (whatever the distance formu-

lae used) outperforms the SVM-based segmentation scheme.

Actually, the incoherence is mainly due to a disagreement ob-

tained for the classification of pixels located in cytoplasm or

nuclei. In that case, since the quality gain essentially concerns

the classification of those pixels, the segmentation quality for

cytoplasm and thus for nucleus too, increases. In addition,

using the distance d2, the mean recognition rate as well as

the mean segmentation quality increase according to the use

of the distance d1. This is mainly due to the fact that the

distance d2 takes into account the dispersion of the two com-

pared spatio-colorimetric clouds.

4. CONCLUSION

A tool for diagnosis assistance by automatic segmentation of

microscopic cellular images is proposed. The main idea of

the method is to process the pixels for which at least one dis-

agreement of classification is observed. The final class for

those pixels is determined under the theory of evidence con-

straint. This allows us to introduce uncertainty on the initial

SVM-based segmentation processes. Depending on the used

distance measure, the final results show that the proposed

method outperforms the SVM-based segmentation technique.

5. REFERENCES

[1] G. Lebrun, C. Charrier, O. Lezoray, C. Meurie, and

H. Cardot, “Fast pixel classification by SVM using vec-

tor quantization, tabu search and hybrid color space,” in

the 11th International Conference on CAIP, Rocquen-

court, France, 2005, pp. 685–692.

[2] V. N. Vapnik, Statistical Learning Theory, Wiley, New

York, 1998.

[3] J. Platt, Fast Training of Support Vector Machines using

Sequential Minimal Optimization, Advances in Kernel

Methods-Support Vector Learning, MIT Press, 1999.

[4] C-W. Hsu and C-J. Lin, “A comparison of methods for

multiclass support vector machines,” IEEE Transactions

on Neural Networks, vol. 13, no. 3, pp. 415–425, 2002.

[5] J. Platt, “Probabilities for SV machines,” in Advances in

Large-Margin Classifiers, D. Schuurmans P. J. Bartlett,

B. Schlkopf and A. J. Smola, Eds., Neural Information

Processing Systems. MIT Press, 2000.

[6] A. Dempster, “Upper and Lower Probablilities Induced

by Multivalued Mapping,” Ann. Math. Statist., vol. 38,

pp. 325–339, 1967.

[7] G. Shafer, A mathematical theory of evidence, Princeton

University Press, 1976.

[8] P. Smets, “Constructing the pignistic probability func-

tion in a context of uncertainty,” Uncertainty in Artificial

Intelligence, vol. 5, pp. 29–39, 1990, Elsevier Science

Publishers.

[9] T. Denoeux, “A k-nearest neighbor classification rule

based on dempster-shafer theory,” IEEE Transactions

on Systems, Man and Cybernetics, vol. 25, no. 5, pp.

804–813, 1995.

[10] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database

of human segmented natural images ans its application

to evaluating segmentation algorithms and measuring

ecological statistics,” in ICCV, Vancouver, BC, July

2001.


