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Abstract:
In this paper, we propose a unified framework to address the problem of cytological computer-
aided diagnosis. Such an approach relies on our previously introduced formalisms: general
formulation of discrete functional regularization, PDEs based morphology and geometric
diffusion on graphs. The approach is illustrated through two applications in cytopathology,
with examples of nucleus extraction and classification.

1. INTRODUCTION

Traditionally, cytopathologists take a diagnostic decision
by studying morphological and texture features of cellu-
lar components (cytoplasm and nuclei), seen through a
microscope. This is a complex process as a cytological
slide can contains millions of cells on which abnormal cells
(affected by a cancer) are often very rare or fortunately
absent. During the last decade, the advent of fast and
efficient high-resolution slide scanners along with the de-
velopment of computer vision has opened the way to using
digital pathology as a diagnosis tool. However, computer-
aided diagnosis involves many tasks, from the acquisition
of the cytological slide to the final classification of each
cell. Indeed, the digital image can be preprocessed for
enhancement, and analyzed to extract cellular objects.
The extracted objects might also be preprocessed, and
analyzed to extract some features in order to perform a
classification. In this work, we use our recently proposed
framework of partial difference equations (PdEs) based
morphology on graphs to address the problem of cyto-
logical computer-aided diagnostic through different sub-
problems: image preprocessing, cell extraction and cell
classification. The rest of this paper is organized as follows.
In Section 2, we introduce the microscopic imaging prob-
lems and propose a strategy to address them. In Section 3,
we provide definitions and notations on graphs that will be
used in the next sections. Sections 4, 5, and 6 present the
different steps of our methodology for processing virtual
slide images. Section 7 concludes this paper.

2. MICROSCOPIC IMAGING PROBLEMS

In this section, we briefly introduce pathology and virtual
slide images, in order to propose our approach to process
such data.

? This work was supported under a doctoral grant of the Conseil
Régional de Basse Normandie and of the Coeur et Cancer association
in collaboration with the Department of Anatomical and Cytological
Pathology from Cotentin Hospital Center.

2.1 Modeling

Pathology is roughly composed of two sections: cytol-
ogy and histology. For both these sections, the visual
inspection of cellular specimens and histological sections
through a light microscope plays an important role in
clinical medicine and biomedical research. Cytology lit-
erally means the study of cells. It studies morphological
features of human body fluid cells which are put on a
glass slide and stained. The study of the modification of
the main cellular components (nucleus and cytoplasm) is
the fundament of the cytological study. The morphological
features of cells are visually evaluated by cytotechnologists
and cytopathologists and these features involve several no-
tions including size, shape, color, texture and topography.
The interaction between nucleus and cytoplasm is also of
interest: the position of the nucleus in the cytoplasm, the
nucleus–cytoplasm area ratio, the position of nucleols in
the nucleus, the color and the granularity of the cytoplasm.

Virtual slide images In this paper we focus on virtual
slide images of cytological slides stained with Feulgen
and Papanicolaou coloration. Virtual slides are digitized
images of slides. A Leica SCN 400 digital microscopical
scanner is used to completely digitize our slides at 40×
magnification scale. The resulting images are compressed
with a quality of 75% in JPEG compression format. To
facilitate the visualization and the processing, scanned
samples acquired by the scanner are directly stored as
an irregular pyramid where each level of the pyramid is
an underresolved version of the highest resolution image
(the pyramid base). The images being very large (about
80000 × 80000 at the highest resolution), each resolution
level is split into image tiles (of size 512 × 512) in a non-
overlapping layout. The usual size of a compressed slide
image is about 2 Gygabytes.

Image object oriented modeling As discussed above, im-
age processing methods are of high interest to provide
Image Decision Guided Systems (IDGS) to perform prog-
nostic, diagnostic and early detection of cancer. For the
case of problems in pathology, image processing can be
used for several tasks: quantification of cellular content
(DNA, proteins, color), recognition and sorting of cellular
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types, extraction of cellular groupings or clusters and of
their topographic relations. In terms of image processing
problems, the objectives concern segmenting or analyzing
objects at different levels: cellular or cellular grouping
level. Cytological images have common properties and can
be described by an image object-oriented modeling. First
of all, the images have to be acquired in color. This is
essential to follow the exact visual way the pathologists
evaluate microscopic images. For a microscopic image, one
can always divide it into two parts: the background and
the rest of the image, namely the objects to be extracted.
The background is always close to a given color and is
usually homogeneous even if some debris or artifacts can
occur (some mucus for instance). The rest of the image is
composed of the elements of interest for the pathologists.
In this work, we use an image object-oriented modeling of
the elements of an image: they can be classified and char-
acterized in terms of size, shape, color and texture. Before
trying to conceive any image segmentation technique, a
pool of representative images has to be built to have a
model of the problem which is as close as possible to reality.
Once this database has been constructed, a segmentation
strategy can be conceived.

2.2 Our proposed scheme

Simplification

Classification

Segmentation

simplified images

nuclei

cytological images

Normal Abnormal

Fig. 1. System overview.

Our approach for processing
cytological virtual slide im-
ages is illustrated in fig. 1.
First step is the simplifica-
tion of images that directly
come from the slide’s images
at the highest resolution.
Simplification can be seen as
a pre-processing step, in or-
der to ease the second step :
segmentation. Here we sep-
arate nuclei from anything
else in the slide. Once seg-
mentation is done, we have
detected all the nuclei in the
slide image. The last step of
our strategy (classification)
is first to extract features of
the segmented nuclei, then
to classify these nuclei, ac-
cording to their feature vec-
tor. Simplification, segmen-
tation, and classification are
performed with partial dif-
ferential equations (PDEs)
on graphs.

3. PRELIMINARIES
ON GRAPHS

AND NOTATIONS

As the core structure of our approach, in this section we
provide notations and basics on weighted graphs. We recall
our formulations of differences, morphological differences
and gradients on weighted graphs (?], ?]).

Notations : We assume that any discrete domain can
be modeled by a weighted graph. Let G = (V,E,w)

be a weighted graph composed of two finite sets: V =
{u1, ..., un} of n vertices and E ⊂ V ×V a set of weighted
edges. The weight function w : V ×V → [0, 1] represents a
similarity measure between two vertices of G. According to
w, the set of edges is defined as: E = {(u, v)|w(u, v) 6= 0}.
We denote by N(u) the neighborhood of a vertex u, i.e.,
the subset of vertices that share an edge with u, and the
notation v ∼ u means that v ∈ N(u). In this paper,
graphs are assumed to be connected, undirected and with
no self loops. We denote by H(V ) and H(E) the Hilbert
spaces of functions that assign a real value to each vertex,
respectively edge, of G. Let us consider A, a subset of V .
The outer and inner boundary sets of A are respectively
denoted ∂+A and ∂−A, with ∂+A = {u ∈ Ac|∃v ∈ A, v ∼
u} and ∂−A = {u ∈ A|∃v ∈ Ac, v ∼ u} where Ac is the
complement of A.

Operators on Weighted Graphs: Given a weighted
graph G = (V,E,w) and a function f ∈ H(V ), the
weighted gradient operator or weighted difference oper-
ator, noted Gw : H(V ) → H(E) is defined on an edge
(u, v) ∈ E by

(Gwf)(u, v)
def
=
√
w(u, v)(f(v)− f(u)) (1)

Based on the weighted gradient operator definition, two
weighted directional gradient operators are defined. The
weighted directional external and internal gradient opera-
tors are defined as G±w : H(V )→ H(E), by

(G±w f)(u, v)
def
=
√
w(u, v)(f(v)− f(u))± (2)

with the following notations: (x)+ = max(x, 0) and (x)− =
−min(x, 0). The weighted gradient of a function f ∈ H(V )
at vertex u is defined as the vector of all weighted gradients
with respect to the set of edges (u, v) ∈ E

(∇wf)(u)
def
= ((Gwf)(u, v))v∈V . (3)

This operator corresponds to the local variation of the
function f at the vertex u and measures the regularity of
f in the adjacent neighborhood N(u). Hence the L2-norm
of the weighted gradient operator is

||(∇wf)(u)||2 =

[∑
v∼u

wuv(f(v)− f(u))2

]1/2
. (4)

In the sequel, the weighted gradient will refer to this
gradient defined on vertices. Similarly, the weighted mor-
phological internal and external gradients at a vertex u are
expressed as

(∇±wf)(u) = ((G±w f)(u, v))v∈V (5)

with the following Lp(p ∈ {1, 2}) and L∞ norms

||(∇±wf)(u)||p =

[∑
v∼u

wp/2
uv |(f(v)− f(u))±|p

]1/p
,

||(∇±wf)(u)||∞ = max
v∼u

(
√
wuv|(f(v)− f(u))±|).

(6)

4. IMAGE SIMPLIFICATION / FILTERING

As described in the previous section, our proposed scheme
to address the problem of processing virtual slide images
is to separate it into the three following problems: prepro-
cessing, cell extraction, and classification, all under our
graph based framework. In this section, we focus on the
preprocesing step. While working on very large data (such
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as virtual slides), many algorithms become inefficient due
to the mass of data to process, and the variability of the
data. A simple and efficient way to avoid this problem
is to work on a simplified version of the data. In this
paper, we consider cytology slide images, with Feulgen
and Papanicolaou coloration. Feulgen coloration is quite
computer-vision-friendly, because the slide can be seen as
a set of two easily separable classes: the background (in
grey) and the nucleus (in pink). Papanicolaou coloration
is the most used in cytology, and stains cytoplasms in
light green and nuclei in dark blue. However, the nuclei
boundaries are often unsharp due to refractiveness or mu-
cus artifacts standing around the nucleus. In order to ease
the segmentation step, we use filtering as a preprocessing
step for this kind of coloration.

4.1 Simplification of the images

In image processing, the graph data-structure is commonly
used to represent a digital image. For our filtering pro-
cess, we use a grid graph, which is a natural structure
corresponding to the definition of digital images: vertices
represent pixels and edges represent pixel adjacency rela-
tionship. From the previous definitions, we introduce here
the weighted p-Laplace operator ∆p

wf(u) at vertex u :

∆p
wf(u) =

∑
v∼u

γ(u, v)(f(v)− f(u)), (7)

where

γ(u, v) = w(u, v)(||(∇wf)(u)||p−22 + ||(∇wf)(v)||p−22 ). (8)

In the case where p = 1 and 2, we have the definitions
of the standard graph curvature ∆1

wf(u) = κf and graph
Laplace ∆2

wf(u) = ∆f operators. More details on these
definitions can be found in ?].

Discrete regularization framework To regularize a func-
tion f0 ∈ H(V ) using the p-Laplace operator (7), we con-
sider the following general variational problem on graphs:

min
f∈H(V )

{Ew,p(f, f0, λ) = Rw,p(f) +
λ

2
||f − f0||2}. (9)

The intuition behind regularization is to provide a
smoother version of an initial function f0 (with the regu-
larizer term) while keeping it close to the initial function
(with the fitting term). The first term, Rw,p(f), is the
regularizer and is defined as the discrete Dirichlet form of
the function f ∈ H(V ) : Rw,p(f) = 1

2

∑
u∈V ||∇wf(u)||p2.

The second term is the fitting term. λ ≥ 0 is a fidelity
parameter called the Lagrange multiplier which specifies
the trade-off between the two competing terms. Both
terms of Ew,p(f, f0, λ) in (9) are strictly convex function
of f (?]). By a standard argument in convex analysis, this
optimization problem has a unique solution for p = 1 and
2 which satisfies, for all u ∈ V :

∂

∂f(u)
Ew,p(f, f0, λ) = ∆p

wf(u) + λ(f(u)− f0(u)) = 0.

(10)

Equation (10) can be viewed as the discrete analogue
of the Euler-Lagrange equation. Using the p-Laplacian

formulation (equation. (7)) in equation (10), the optimiza-
tion problem solution is also the solution of the following
system of equations. For all u ∈ V ,

(
λ+

∑
v∼u

γ(u, v)

)
f(u)−

∑
v∼u

γ(u, v)f(v) = λf0(u). (11)

To approximate the solution of the minization (9), we can
linearize this system of equations and use the Gauss-Jacobi
method to obtain the following iterative algorithm:


f (0)(u) = f0(u),

f (t+1)(u) =
λf0(u) +

∑
v∼u γ

(t)(u, v)f (t)(v)

λ+
∑

v∼u γ
(t)(u, v)

.
(12)

where γ(t)(u, v) is the γ function (in equation (8)) at the
iteration step t. At each iteration of the algorithm, the
value of f at step (t + 1), for a vertex u, only depends
on two quantities: the original value f0 and the sum of
the weighted existing values f (t) in the neighborhood of u.
By using different formulations of w and different values
of p, a family of linear and nonlinear filters is obtained.
Indeed, when p = 2 and w(u, v) = 1 one obtains the linear
diffusion on graphs. When p = 1 and w(u, v) = 1 one
recovers the TV digital filter (?]). The reader can note that
this isotropic regularization corresponds to the weighted
discrete transcription of the regularization functional in
the continuous case. The interested reader can refer to ?]
for more details on the formulation and the connections
with other formalisms.

Image filtering Through the values of the p parameter,
the discrete regularization (10) describes a family of linear
and nonlinear filters. This image filtering/denoising can
be viewed as an image simplification that can ease the
seed extraction step. Before processing acquired cytolog-
ical whole slide, they are split into thousands (it varies,
depending on the size of the acquired virtual slide) of
1024×1024 tiled images. All images presented in this paper
are very small details extracted from some of the processed
tiled images and obviously can not represent the hugeness
of digital slides. Fig. 2(a) and 2(b) show a filtering with

p = 2 and w(u, v) = e
−(d(u,v))2

σ2 , with d(u, v) the Minkowski
distance of order 2 in the RGB color space, on a Feul-
gen cytological image represented by an 8-adjacency grid-
graph, i.e., a graph that connects a pixel to its neighbors
in a 3 × 3 spatial window centered on the pixel. During
regularization, each color channel is processed separately.
Fig. 2(c) and 2(d) show a filtered version of the v∗ channel
of the CIELUV color space (see ?] for details on color
spaces) of a Papanicolaou stained image (v∗ caracterising
a blue-green opposition, and being the most discriminant
to extract nuclei for Papanicolaou staining), with p = 2

and w(u, v) = e
−(f(v)−f(u))2

σ2 e
−
(

(xv−xu)2

2σ2s
+

(yv−yu)2

2σ2s

)
, with

(xu, yu) and (xv, yv) the corresponding spatial coordinates
in the image of, respectively, u and v. In this case, we
construct a grid graph with edge connections in a spatial
square window of width related to σs. One can note that
this last weighting function permits to recover a bilateral
filter (?]).
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(a) (b)

(c) (d)

Fig. 2. Examples of cytological image pre-processing.(a)
initial Feulgen stained image. (b) Preprocessed image
using discrete regularization framework. (c) initial Pa-
panicolaou stained image (gynecology). (d) Filtered
version of v∗ channel of CIELUV color space of the
initial image.

5. IMAGE SEGMENTATION

In this section we focus on the cell extraction step of our
strategy. To extract cells, we perform a segmentation of
the simplified images obtained from the pre-processing
step. As the algorithm we detail in this section performs a
label propagation, we first extract seeds from the simplified
images that will be used as initial labels to propagate. We
first provide details and recalls on PdEs based morphology
to introduce our methods, which is also based on the
previous definitions provided on graphs and operators on
graphs. We then make a link with the static version of
the eikonal equation (for further details, see ?]), and show
the use of front propagation for initial label propagation.
Results are shown in the last part of this section.

5.1 Eikonal equation on weighted graph

PdEs based Morphology Discrete dilation and erosion on
weighted graphs are defined by

∂tf(u) = +||(∇+
wf)(u)||p and ∂tf(u) = −||(∇−wf)(u)||p,

(13)
respectively. These equations (13) constitute a PdEs based
framework (?]) that extends algebraic and continuous
morphological operators to graphs. Such a framework has
been involved in the transcription of geometric PDEs from
continuous domains, to graphs of arbitrary topology. To
solve these dilation and erosion process (equations 13), we
use the iterative scheme proposed in ?]. For the dilation

: f t+1(u) = f t(u) + ||(∇+
wf

t)(u)||p, and for the erosion :
f t+1(u) = f t(u)− ||(∇−wf t)(u)||p.

Indeed, given, a set of vertices A ⊂ V and using external
and internal graph boundaries, the equation of dilation
over A can be intuitively interpreted as a growth process
that adds vertices from ∂+A to A. By duality, erosion
over A can be interpreted as a contraction process that
removes vertices from ∂−A. Let Γ be a parametrized curve
evolving on a domain Ω. A very common way to describe
the evolution of Γ, popularized by ?], is to embed the curve
in a function φ(x, t) such that the evolving curve Γt can
be provided by the 0-level set of φ. Once formulated as a
level set problem, the curve evolution amounts to solving
the following equation:

∂φ

∂t
= F|∇φ|. (14)

In ?], a transcription of (14) has been proposed to weighted
graphs, that can be expressed as a morphological process
with the following sum of dilation and erosion.

∂φ

∂t
(u) = F+||(∇+

wφ)(u)||+ F−||(∇−wφ)(u)||, (15)

where F ∈ H(V ) controls the front propagation. Such a
formulation enables recovery of geometric diffusion models
such as mean curvature motion, active contours, or a
graph based transcription of the eikonal equation. The
eikonal equation is also a very popular equation in com-
puter graphics and computer vision which is involved in
many applications. Numerous methods have been pro-
posed to solve it on Cartesian grids and some particular
non-Cartesian domains (see ?] and references therein).
Recently, two adaptations of the eikonal equation have
been proposed, first as a time dependent version (?]), then
as a static version (?]) which is expressed as{

||(∇−wf)(u)||p = P (u), ∀u ∈ V,
f(u) = 0, ∀u ∈ V0,

(16)

where V0 ⊂ V corresponds to the initial set of seeds
vertices, and P a potential. Such adaptations are expressed
using the PdEs based morphological erosion, and can be
linked with the general geometric PdE equation (15). In
?], a label propagation algorithm has been proposed based
on the resolution of (16), that enables the propagation of
many labels on a graph. The propagation is performed
from a set of seeded vertices and until all vertices of the
graph are marked with a label. This algorithm enables
many applications on graphs, such as geodesic distance
computation on graphs, image segmentation and data
clustering.

5.2 Nuclei extraction by label propagation

Seeds extraction In ?], a method is proposed to auto-
matically extract seeds from the simplified Feulgen image
resulting from the preprocessing step. As we can see in
fig. 2, the background is homogeneous and can be auto-
matically and roughly detected as the biggest region of
similar pixels (in the sense of color variance). Such pixels
become the seeds of the background label (see fig. ??). For
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Papanicolaou stained images, an H-minima method (see ?]
for details on H-minima) is used on the simplified version
to automatically get seeds from the nuclei. Considering the
set S of nuclei seeds, an erosion is performed on Sc to get
non-nuclei seeds that do not overlap potential nuclei (see
fig. ?? for illustration).

(a) (b)

(c) (d)

Fig. 3. Feulgen nuclei extraction : (a) Initial labels (in
blue) computed on Feulgen stained simplified image.
(b) extracted nuclei. (c) Eroded background seeds (in
red) and initial nuclei seeds (other colors but black)
computed on Papanicolaou stained simplified image.
(d) extracted nuclei.

Label propagation Once background seeds have been
extracted, they are propagated on the image grid-graph
until being stopped by nuclei boundaries. Using equation
(6) and equation (16), we get for p 6= +∞:

(∑
v∼u

wp/2
uv max(0, (f(u)− f(v)))p

)
= P (u), p ∈ {1, 2},

(17)

and for p = +∞:

max
v∼u

(
√
wuv max(0, f(u)− f(v))) = P (u), p =∞. (18)

For the sake of clarity, we only present here the solution
for the L∞ norm formulation (??):

x =
n

min
j=1

(aj + hjC), (19)

where x = f(u), n = card(N(u)), ai = {f(vi)|vi ∈ N(u)
with i = 1, ..., n}, hj = 1/

√
wuv, and C = P (u).

Further details on the front propagation algorithm can be
found in ?]. The stopping criterion is held by the potential
P of equation (16), as

P (u) = 1/((µN − f(u))2 − (µB − f(u))2 +K(u)), (20)

where µN and µB are respectively the mean color of
nuclei and background, K is the graph-curvature term that
constrains the label evolution to produce smooth regions.
The global solution (over the entire graph) is computed
in a simple way: let NB be a narrow band of vertices to
update (where the distance has to be computed), A a list
of already updated vertices, and FA a set of vertices which
are not in one of these sets. The algorithm is initialized as
follows: the initial seeds set (V0) is added to A, vertices
on the outside boundary of A are added to NB, and the
remaining vertices compose FA. The computed distance
at a vertex u is indeed the distance to the nearest seed
from u (with respect to the graph topology, the weighting
function w, and the potential P ). So the front arriving at
a vertex u is necessarily coming from the nearest seed of
u, and it becomes easy to associate the right label with
it, looking at the labels of the neighbors of u (at least one
being marked by the front already passed). The labeling
process can be summarized by the following formula: each
time f(u) is updated, the label L(u) is given by

L(u) = L(v)|v ∈ N(u), f(v) < f(u) and
f(v)

wuv
= min

z∼u
(
f(z)

wuz
). (21)

The results of this segmentation scheme are illustrated in
fig. ?? for Feulgen images and fig. ?? for Papanicolaou
images. It has been evaluated on a hundred images by a
cytopathologist (per nuclei visual assessment) and 98% of
the nuclei are extracted and correctly delineated.

6. OBJECT CLASSIFICATION / CLUSTERING

In this section, we show that data classification problems
can be addressed using the same framework as in the
previous sections. Examples on Feulgen stained cytological
images will be used to illustrate our method.

As said previously, the last step of our scheme is to classify
nuclei extracted from the segmentation step, to determine
if some are abnormal. This is a data classification problem,
into two (or more) classes: the data to classify is the set of
nuclei, and typical classes are normal and abnormal.

6.1 Characteristics extraction

To begin with, we have to represent nuclei as data to
classify. From the segmentation process, we first compute
characteristics on each extracted nucleus (area, compacity,
...), which form a feature vector describing each nucleus.

6.2 Classification

The classification problem can finally be seen as a semi-
supervised graph clustering problem, where the data is
represented as a k-nearest-neighbor graph (each feature
vector is represented by a vertex which is connected to
its k most similar vertices in the whole graph, according
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to a similarity function). The clustering is performed using
the previously seen label-propagation algorithm on graphs,
with a label per class. Label seeds are given by a reference
data set (where the class of each nucleus is known), the
entries of which are added to the graph. Such a cluster-
ing method is illustrated in fig. ?? with a 4-labels semi-
supervised graph clustering example. Using graph based
label propagation for clustering the set of nuclei has two
main advantages. First there is no classifier training, and
modifying the reference data set does not imply to retrain
a classifier (as it is the case while using neural networks for
example). Second, graphs intrinsically provide a represen-
tation of the organization of the different classes and the
position of each nucleus in each class. Such information
can be of crucial importance for cytopathologists in the
case of ambiguous cells.

Fig. 4. Nuclei classification using semi-supervised graph
clustering via the label propagation algorithm. Top:
seeds of each class. Bottom: classification result.

7. CONCLUSION

In this paper, we proposed a graph based approach us-
ing a general formulation of discrete functional regular-
ization, PDEs based morphology and geometric diffusion
on weighted graphs of arbitrary topology to address the
problem of cytological computer-aided diagnosis. The ap-
proach is very general and has been illustrated both on
Papanicolaou and Feulgen stained slides. In both cases,
the proposed unified methodology has given very good and
promising results.
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