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Nonlocal PDEs-Based Morphology on Weighted
Graphs for Image and Data Processing

Vinh-Thong Ta, Abderrahim Elmoataz, and Olivier Lézoray

Abstract—Mathematical morphology (MM) offers a wide range
of operators to address various image processing problems. These
operators can be defined in terms of algebraic (discrete) sets or
as partial differential equations (PDEs). In this paper, we intro-
duce a nonlocal PDEs-based morphological framework defined on
weighted graphs. We present and analyze a set of operators that
leads to a family of discretized morphological PDEs on weighted
graphs. Our formulation introduces nonlocal patch-based config-
urations for image processing and extends PDEs-based approach
to the processing of arbitrary data such as nonuniform high di-
mensional data. Finally, we show the potentialities of our method-
ology in order to process, segment and classify images and arbi-
trary data.

Index Terms—Adaptive operators, data clustering, mathemat-
ical morphology, nonlocal patch-based processing, partial differ-
ential equations (PDEs), weighted graphs.

I. INTRODUCTION

M ATHEMATICAL morphology (MM) is a popular non-
linear approach for image processing that has found

numerous applications including shape and texture analysis,
biomedical image processing, document recognition or mul-
tiresolution techniques. First developed by [1] and [2], MM
relies on a fundamental structure: the complete lattice [3].
With the acceptance of complete lattice theory, it is possible to
define morphological operators for any type of image once a
proper ordering is established. Within this model, morpholog-
ical operators are represented as mappings between complete
lattices in combination with matching patterns called struc-
turing elements. In particular, the two fundamental operators
in flat MM are dilation and erosion. For a scalar function
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, , and a structuring element ,
dilation and erosion of w.r.t. are

and

These two operators form the basis of many other morphological
processes such as opening/closing or reconstruction filters [4],
[5]. As a consequence, the implementation of such algebraic
morphological operators is usually performed within a discrete
setting.

For convex structuring elements, an alternative to the alge-
braic formulation relies on nonlinear partial differential equa-
tions (PDEs) [6]–[8]. This framework has several advantages.
First, it offers excellent results for nondigitally scalable struc-
turing elements whose shapes cannot be correctly represented
on a discrete grid. Second, it allows subpixel accuracy and third,
it can be adaptive by introducing, for instance, a local speed evo-
lution term [9].

Let be a structuring set induced by the
norm. The flat dilation and erosion of w.r.t.

can be obtained by the following PDEs:

and

(1)

where is a modified version of , is the gradient operator,
and the initial condition is .

These versions of dilation and erosion are also the basis of
other continuous morphological operators such as leveling or
continuous watershed with eikonal equation (see for instance
[7], [10], [11] and references therein). To be applicable to im-
ages, (1) are discretized and specific numerical schemes are
used: for instance, see [12]–[14], and, more recently, a variant of
the flux corrected transport technique [15], [16] used for tensor
images and matrix morphological processing [17].

Whatever the chosen formulation, if MM is well defined for
binary and gray-scale images, the extension to multivariate un-
organized data sets is not straightforward [18]. Algebraic for-
mulation requires an ordering on vectors and several orderings
have been reported in literature [19] but none of them has yet
been widely accepted. Multivariate high dimensional data pro-
cessing with PDEs-based formulations can be difficult due to
the space discretization of irregular domain.

Adaptive algebraic and PDEs-based morphology have
recently received a lot of attention. Such operators can be
adaptive with spatially-variant structuring elements or intensity
level-adaptive. For instance, one can quote the following works
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[20]–[22] for image processing or [23]–[25] that extend the
property of translation invariance of morphological operators
in a spatially-varying morphology framework. The interested
reader can also refer to [26] and references therein for a recent
overview on adaptive morphology.

In this paper, we propose another approach to design adaptive
morphological operators for images. Indeed, nonlocal patch-
based schemes have recently received a lot of attention. First
introduced for texture synthesis [27], these schemes have then
been used for image processing [28]–[31]. These latter works
have shown the efficiency of nonlocal patch-based configura-
tions as compared to the local ones. In this work, we propose
a set of morphological operators that enables nonlocal patch-
based configurations for image processing.

1) Previous Works and Contributions: In [30], [32], we
have introduced discrete version of continuous regularization
models. These works are based upon new definitions of non-
local operators over graphs that enable images, meshes or data
processing. Inspired by these works, we have proposed in a con-
ference paper [33] the basis of a new formulation of MM that
considers a discrete version of PDEs-based approaches over
weighted graphs. An extension of this work has been proposed
that formally introduced our morphological differential opera-
tors for nonlocal patch-based image and data processing [34].
Our formulations have also been used to extend PDEs-based
leveling [35]. Finally, with the same ideas, we have recently
adapted the eikonal equation for data clustering and image
segmentation [36].

In this work, we present a self-contained paper and a frame-
work that unifies all these previous works. This framework is
composed of a collection of adaptive nonlocal morphological
operators and equations defined over weighted graphs. We
present the relationships between these PDEs-based morpho-
logical operators on weighted graphs, continuous and algebraic
morphological systems, eikonal equation and other adaptive
approaches. Finally, our formulation has the advantage of nat-
urally enabling local and nonlocal patch-based configurations.
This point introduces a new family of nonlocal patch-based
operators for image processing and segmentation by morpho-
logical tools.

The paper is structured as follows. Section II defines and re-
calls operators on graphs. Section III presents our MM frame-
work: we define basic dilation and erosion as well as leveling
and the adaptation of the eikonal equation. Section IV provides
basic notions on weighted graphs and key points for their con-
struction. This section also illustrates the adaptivity of our op-
erators with graph weights and topology. Section V shows ex-
periments and illustrates local and nonlocal patch-based image
processing and segmentation. Potentialities of our methodology
in order to process and cluster any data are also presented. Last
section concludes.

II. OPERATORS ON WEIGHTED GRAPHS

In this section, operators on weighted graphs that constitute
the basis of our morphological framework are detailed.

A. Notations

We consider the general situation where any discrete do-
main can be viewed as a weighted graph. Let
be a weighted graph composed of a finite set of vertices
and a finite set of weighted edges . An edge

connects two adjacent (neighbor) vertices and
of . The set of neighbors of a vertex is denoted by

. The weight
of an edge can be defined by , if and
otherwise. Graphs are assumed to be simple, connected and
undirected [37], implying that .

B. Weighted Difference On Graphs

All the basic operators considered in this paper are defined
from the difference operator. There exists several definitions of
this operator on graphs (see for instance [38]). Here, we consider
a definition that allows the expression of weighted gradient on
graphs. The weighted difference [32] of a function
is

(2)

Based upon this operator, we define the external and internal
weighted differences by

and

(3)

with the following property . These
two operators recover classical difference operators and extend
them to weighted graphs that enables more adaption in the dif-
ference computation.

C. Gradients on Graphs and Norms

The weighted gradient of a function at a vertex
is the vector of all edge differences

(4)

We also introduce the internal and external weighted gradients
based upon (3) such that for a vertex [33], [34]

and

(5)

The external gradient is an operator defined as the difference be-
tween an extensive operator and a function (a typical one being
the ). Similarly, the internal gradient uses an anti-extensive
(the ) operator [39].

In the sequel, we use the and norms of (5). For a vertex
, we have

and (6)

(7)
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Fig. 1. Graph boundary sets. Blue vertices: set. “Plus” and “minus” vertices:
and sets, respectively.

With the following notations. will denote that vertices
and are adjacent. For two vertices and

and

The general definitions presented in this section are defined
over weighted graphs. They can therefore be used to process any
discrete data that can be represented by a graph. In the sequel,
we will show how these operators leads to a family of PDEs-
based morphological processes on weighted graphs.

D. Relations With Algebraic Morphological Operators

For the particular case of an unweighted graph (i.e.,
) and with , (7) corresponds to algebraic

morphological operators where the structuring element is pro-
vided by the graph neighborhood [40]. Hence, the norm of

are the definitions of algebraic external and internal gradi-
ents

With these latter relations, we immediately have the algebraic
morphological gradient and Laplace operators

and

E. Graph Boundary Sets and Relations With Weighted
Gradients

Let such that , there exists a vertex
with . We denote by and , the external and
internal boundary sets of :

and

(8)

The boundary of cannot be defined directly from the previous
definitions, we assume it is known. Fig. 1 illustrates these no-
tions on two different graphs.

The following properties show relations between graph
boundary sets and the weighted gradient norms (6) of the level
sets of a function . The decomposition of into its level sets
is denoted with is the indicator
function.

1) Property 1: For any level set , there exists a set
such that the gradient norms (6) are,

and

(9)

Moreover, verifies [34].
Proof: We prove the first equation in (9). One has

Studying the case where , and similarly
with its neighbors, we can deduce the first relation in (9):

only when and its neighbors
. This vertices’ configuration corresponds to the defini-

tion of the external set of vertices . Second equation in
(9) can be obtained with the same scheme.

The next property shows the relation between the norms of
gradient (4) and gradients (5)

2) Property 2: For any level set , the norm of the gra-
dient , at a vertex , can be decomposed as [34]

Proof: Using the identities if
and otherwise, we have

From this property

if
if

Properties (1) and (2), only consider the norm with
. For the norm, same results can be obtained.
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III. NONLOCAL PDES-BASED MORPHOLOGICAL FRAMEWORK

ON WEIGHTED GRAPHS

In this section, we present our nonlocal MM framework. Our
approach uses the previous definitions of weighted gradients
that lead to a class of discrete equations that mimic PDEs-based
definitions of dilation, erosion, leveling and eikonal equation on
weighted graphs.

A. Dilation and Erosion on Weighted Graphs

We define the discrete version of PDEs-based dilation and
erosion definitions (1). For a weighted graph
and an initial function defined on

dilation and (10)

erosion (11)

with the initial condition .
To establish these equations we use the decomposition of

into its level sets . Intuitively with (8), a dilation (resp. ero-
sion) over can be interpreted as a growth (resp. con-
traction) process that adds (resp. removes) vertices from
(resp. ) to . As for the continuous case, a simple varia-
tional definition of dilation (resp. erosion) applied to can be
interpreted as maximization (resp. minimization) of a surface
gain proportionally to (resp. ).

With the properties defined in Section II-E, dilation of over
corresponds to only consider the set . Hence, dilation

can be expressed by ,
where is reduced to . Similarly, erosion can
also be defined as . Finally, by
extending these two processes for all the levels of , we can
naturally consider the two families of dilation (10) and erosion
(11) parametrized by and over .

The discrete expression of the internal and external gradients
constitute direct numerical schemes. With the usual notation

, the general iterative scheme for and
can be defined, , at time as:

(12)

With the and norms, (12) becomes:

(13)

(14)

At each step of these algorithms, the new value at vertex only
depends upon its value at step and the existing values in its
neighborhood.

B. Adaption of Leveling on Weighted Graphs

Nonlinear PDEs that model a general class of morphological
filters, the levelings, have been introduced by [10]. Particular
cases of such filters are reconstruction openings and closings
[41].

Given a reference image and a marker
image , leveling of by an infinitesimal
disk can be obtained, , by [10]

(15)

where is the sign function defined as
equals 1 if , if and 0 if .

At convergence, the levelings of w.r.t. is obtained.
The leveling corresponds to a sign varying process that controls
the behavior of and can be viewed as a conditional dilation/
erosion process.

Let be a reference function and
be a marker from which a reconstruction can be produced.

Using and , the discrete version of (15) for a weighted graph
, is

(16)
Equation (16) describes a family of leveling parametrized by
and . When (resp. ) then
(16) acts as a dilation (resp. an erosion) process. Equation (16) is
defined on graphs: the same scheme can be used on any discrete
data and our formulation naturally enables nonlocal patch-based
configurations for image restoration [35].

C. Adaption of Eikonal Equation on Weighted Graphs

Solutions of the nonlinear eikonal equation have found nu-
merous applications. For instance, in computer vision: median
axis or skeleton extraction [42], shape from shading [13] or
image segmentation can be mentioned. This latter application
uses the stationary version of the level sets formulation [43]
that corresponds to solving the eikonal equation. For instance,
minimal path extraction for 2D and 3D images uses this method
[44]. In computer graphics, the eikonal equation is used to
compute geodesics on surfaces with (un-)structured meshes on
(non)Cartesian domains [45]–[48].

The isotropic eikonal equation can be expressed as

(17)

where is a positive function defined on and is the traveling
time or distance from source . is a given potential function
(in image segmentation, can depend upon a gradient com-
puted from initial images). Usual methods used to solve (17) are
based upon discretization of the gradient and leads to a nonlinear
system. This system is usually solved by an iterative method
[13], Fast Sweeping [49] or Fast Marching [43] which is based
upon an optimal algorithm [50]. The Fast Marching is actually
the most used algorithm. Another approach to solve (17) is to
consider the following time dependent system:

(18)

At convergence, solution of (18) is the solution of (17).
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The eikonal equation describes the evolution of a curve (or a
surface) with the level set point of view [12], [43], [51]. With
level sets, the curve evolution can be expressed by

(19)

where corresponds to the level set function. Then, solution
can be interpreted as the minimal time where the zero level

set of crosses the point . This evolution can also be
interpreted as morphological processing [52]. Indeed, the front
propagation driven by in the normal direction can be com-
puted by dilating or eroding the curve’s boundary at time by
an unit disk of size . Finally, when equals 1 or then (1)
are recovered.

Equation (18) can be viewed as an erosion process regarding
the minus sign and constant . Then, with (11), the discretiza-
tion of (18) on a weighted graph is

(20)
where is the initial set of seed vertices and .
This system is parametrized by and [36].

D. Related Schemes

With a particular graph, and weight function, our frame-
work is related to well-known schemes and can be seen as an
extension of the related approaches. This section presents these
relations.

1) Algebraic Dilation and Erosion on Graphs: With
and an unweighted graph, without loss of generality, the scheme
(14) based upon norm is the algebraic dilation and erosion
on graphs [40], [53].

Dilation can be rewritten for as

if and
otherwise. In both cases, flat algebraic

dilation over graph is obtained

With the same scheme, flat algebraic erosion over graph is

For both cases, the structuring element is provided by the vertex
neighborhood.

2) Osher-Sethian Scheme in Dimensional Grid: In pre-
vious works, we have presented the relation between our nu-
merical scheme and the Osher-Sethian scheme for a 2-D grid.
In the sequel, we present the extension to dimensional grid
and any grid spacing size.

Let be a weighted graph that represents a
dimensional grid. Let be a vertex associated to a dimen-
sional vector of spatial coordinates:
where and is the grid spacing size with .

TABLE I
APPROACHES RELATED TO OUR FRAMEWORK

The neighborhood of can be defined as
where is the vector such

that if and otherwise.
Without loss of generality, we consider the case of dilation.

Replacing in (13), vertices by its spatial coordinates, with
and with the notations

we have for a vertex and with

(21)

since . This scheme corre-
sponds to the Osher-Sethian numerical scheme for a grid of
dimension and any grid spacing [12], [43].

3) Shortest Path Algorithm on Graphs: Let be an un-
weighted graph representing a dimensional data set. When

and , a Dijkstra like algorithm can be obtained
with (20). By neglecting , (20) can be rewritten, as

This algorithm corresponds to a Dijkstra like shortest path algo-
rithm for any graph. At each step, the distance at vertex
corresponds to the minimal distance in its neighborhood.

Finally, Table I summarizes the approaches that are related to
our framework ( corresponds to the unweighted case).

E. Vector Valued Case

All formulations presented in the latter sections consider
scalar function. In the case of a vector valued function

with and ,
all the previous processes are performed on each component

independently, leading to processes. Component wise
processing can have drawbacks. To overcome this limitation,
processes acting on vector-valued function need to take into ac-
count the inner correlation between vector-valued functions. In
our methodology, the edges weight function acts as a coupling
term between these components that enables to overcome this
limitation.
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IV. ADAPTIVE FRAMEWORK

The last section shows that our morphological framework
constitutes a family of operators parametrized by and . The
graph topology can also be adapted depending upon the function
to process. With these points, our framework constitutes a set of
adaptive operators. It can be considered as one methodology of
adaptive morphology among the approaches proposed in liter-
ature such as morphological amoebas [54], [55], PDEs-based
viscous morphology [56] or continuous anisotropic morpholog-
ical operators [9].

In this section, we recall key points on graph construction
and weights. For image processing, we also show how nonlocal
patch-based information can be incorporated within the graph
weights.

A. Graph Construction

Any discrete domain can be modeled by a weighted graph
where each data point is represented by a vertex . This do-
main can represent unorganized or organized data where func-
tions defined on correspond to the data to process.

1) Unorganized Data: In this general case, an unorganized
set of points can be seen as a function .
Then, defining the set of edges consists in modeling the neigh-
borhood of each vertex based upon similarity relationships be-
tween feature vectors of the data set. This similarity depends
upon a pairwise distance measure . A
typical choice of for unorganized data is the Euclidean dis-
tance. Graph construction is application dependent and no gen-
eral rules can be given. However, there exists several methods to
construct a neighborhood graph. The interested reader can refer
to [57] for a survey on proximity and neighborhood graphs. In
this paper, we focus on two classes of graphs: a modified ver-
sion of -nearest neighbors graphs and -neighborhood graphs.

The -neighborhood graph, noted is a weighted graph
where the -neighborhood for a vertex is defined as

where is a
threshold parameter.

The -nearest neighbors graph, noted is a
weighted graph where each vertex is connected to its
nearest neighbors that have the smallest distance measure
towards according to function in . Since this graph is
directed, a modified version is used to make it undirected i.e.,

for . When
, one obtains the where the nearest

neighbors are computed for all the set . For clarity, the
will be noted -NNG in the rest of this paper.

2) Organized Data: Typical cases of organized data are sig-
nals or images (2D or 3D). Such data can be seen as functions

with or corresponding
to the previously mentioned cases. Then, the distance used
to construct the graph corresponds to a distance between spa-
tial coordinates associated to vertices. Several distances can be
considered. Among those, for a 2D image, we can quote the
city-block distance: or the
Chebyshev distance: where
vertices and is associated with their spatial coordi-
nates. With these distances and a -neighborhood graph, the

usual adjacency graphs used in 2D image processing are ob-
tained where each vertex corresponds to an image pixel. Then,
a 4-adjacency and an 8-adjacency grid graphs (denoted and

, respectively) can be obtained with the city-block and the
Chebyshev distance, respectively (with ). More generally,

-adjacency graphs are obtained with a Chebyshev
distance with and . This corresponds to add edges
between the central pixel and the other pixels within a square
window of size . Similar remarks apply for the con-
struction of graphs on 3D images where vertices are associated
to voxels.

The Region Adjacency Graphs (RAGs) can also be con-
sidered for image processing. Each vertex of this graph
corresponds to one region. The set of edges is obtained with
an adjacency distance: if and are adjacent and

otherwise, together with a -neighborhood graph
: this corresponds to the Delaunay graph of an image

partition.
Finally, we can mention the cases of polygonal curves or sur-

faces that have natural graph representations where vertices cor-
respond to mesh vertices and edges are mesh edges.

B. Graph Weights

For an initial function , similarity relation-
ship between data can be incorporated within edges weights
according to a measure of similarity with

. Computing distances between ver-
tices consists in comparing their features generally depending
upon . To this end, each vertex is associated to a feature
vector where corresponds to this vector
size

(22)

Then, the following weight functions can be considered. For an
edge and a distance measure
associated to , we can have

(unweighted case)

with

(23)

Usually, is the Euclidean distance function. Several choices
can be considered for the expression of depending upon
the features to preserve. The simplest one is .

1) Nonlocal Patch-Based Image Processing: In image pro-
cessing, an important feature vector is provided by image
patches. For a gray-scale image , the vector
defined by an image patch corresponds to the values of in a
square window of size centered at a vertex (a pixel).
Fig. 2 shows examples of image patches. A given vertex (cen-
tral pixel represented in red) is not only characterized by its
gray-scale value but also by the gray-scale values contained in a
square window (a patch) centered on it. This feature vector has
been proposed for texture synthesis [27], and recently used for
image restoration and filtering [28], [29]. In image processing,
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Fig. 2. Four examples of images patches. Central pixels (in red) are associated
with vectors of gray-scale values within a patch of size 13 13 .

Fig. 3. Adaptivity with weight function. Closing operation. (a) Noisy image.
(b) Unweighted. (c) Weighted. (d) Nonlocal patch-based weights.

such configurations are called “nonlocal” and these latter works
have shown the efficiency of nonlocal patch-based methods as
compared to local ones, in particular by better capturing com-
plex structures such as objects boundaries or fine and repetitive
patterns. The notion of “nonlocality” (as defined by [29]) in-
cludes two notions: 1) the search window of the most similar
neighbors for a given pixel and 2) the feature vector to compare
these neighbors. In [29], nonlocal processing consists in com-
paring, for a given pixel, all the patches contained in an image.
In practice, to avoid this high computational cost, one can use a
search window of fixed size.

Local and nonlocal methods are naturally included in
weighted graphs. Indeed, nonlocal patch-based configurations
are simply expressed by the graph topology (the vertex neigh-
borhood) and the edges weights (distances between vertex
features). Nonlocal processing of images becomes local pro-
cessing on similarity graphs.

Our morphological operators on graphs (weighted differences
and gradients) naturally enable local and nonlocal configura-
tions (with the weight function and the graph topology) and in-
troduce new morphological tools for image processing.

C. Adaptive Morphological Framework

In this section, we show that our graph-based morphological
operators can be considered as adaptive operators. This adap-
tivity is expressed by the value of , the weight function
and the graph topology. In the sequel, we show this adaptivity
through graph weight and topology.

1) Adaptive Morphology by Graph Weights and Topologies:
Adaptivity with graph weights. We illustrate the adaptivity of
our morphological framework with the graph weights, in par-
ticular the nonlocal patch-based weights. Fig. 3 illustrates an

adaptive weighted closing on a noisy image [Fig. 3(a)].
In the unweighted case [Fig. 3(b)], a classical closing operation
is performed. This processing tends to destroy the main image
components. Using a weight , a better preservation of image
structures and the image subregion is obtained [Fig. 3(c)]. With
nonlocal patch-based configuration [Fig. 3(d)], the processing
acts mainly on similar pixels. In this latter case, a denoising ef-
fect is obtained while preserving the complex structure of the
subregion. Finally, the weight function can be seen as a local
speed function that controls the morphological processing.

Adaptivity with graph topologies. We can adapt morpho-
logical processing by changing the graph topology. Indeed, the
vertex neighborhood acts as a structuring element. Fig. 4 shows
an example of adaptive dilation on a noisy image [Fig. 4(a)].
Results presented are obtained with five iterations and corre-
spond to an algebraic operation. First result [Fig. 4(b)] shows a
standard dilation with a graph that corresponds to a square
structuring element of size 5 5 (with Chebyshev distance).
In this case, the dilation acts uniformly over all the image and
image structures. Second result [Fig. 4(c)] shows an adaptive
dilation where the structuring element is locally computed.
The final graph is a (each pixel is connected with
the 25 nearest neighbors selected in a search window of size
11 11). With locally adapted structuring elements, one can
obtain local morphological processing that better preserves
image structures.

2) Related Adaptive Morphological Methods: Our morpho-
logical framework is related to adaptive methods proposed in
literature such as morphological amoebas [54], [55] or PDEs-
based viscous morphology [56].

Morphological amoebas. Let be a scalar initial
image. Let be an unweighted 4-adjacency grid
graph associated to . Let be a path that connects two vertices

and such as and with and
. Let be a -neighborhood graph (constructed

from ) used for encoding the structuring element. We can
define the distance as with

or where

with : a parameter that penalizes large variations of .
corresponds to the amoeba distance defined in [54]. Combining
vertex spatial coordinates and gives

where . and
correspond to two alternative amoeba distances proposed by

[55].
is then obtained with the following vertex neighborhood.

For , . This latter
graph corresponds to the graph structure used by morphological
amoebas.
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Fig. 4. Adaptivity with graph topology. (a) Noisy image. (b) Dilation with
5 5 square structuring element . (c) Dilation with a .

TABLE II
ADAPTIVE APPROACHES RELATED TO OUR FRAMEWORK

Continuous viscous morphology. Our morphological
framework is also related with PDEs-based viscous mor-
phology proposed by[56]. Let be a function that depends
upon an initial gray-scale image and can be any function
of the luminance of [56]. Since only depends upon a
given vertex , then . For

, (10) and (11) become

This latter expression corresponds to the PDEs-based vis-
cous morphology defined in [56] where the function
is or

. is the constant weight defined in (23).
Finally, Table II summarizes the special cases of adaptive

morphology that are related with our approach where notation
corresponds to the city-block distance.

V. EXPERIMENTS

In this section, we present various experiments in image and
data processing. It is important to note that the following ex-
periments only show the potentialities and the behavior of our
methodology. The objective is not to solve a particular problem
or application.

A. Image Processing and Segmentation

In this section, experiments for image processing and seg-
mentation with different graph topologies are provided in order
to show the behavior of our proposals. We also show the ben-
efits of nonlocal patch-based configurations. We also illustrate
the ability of our framework to consider any image graph such
as region-based graph.

1) Pixel-Based Graphs: As mentioned in the previous sec-
tions, nonlocal patch-based configurations in graph context con-
sists in computing a similarity graph where the vertex neigh-
borhood and the graph weights take into account the nonlocal

patch-based information contained in images. All graphs con-
sidered in the following experiments are based upon pixels.

Image processing. The objective of the following experi-
ments is to illustrate the ability of our morphological tools to
filter or reconstruct images without destroying main compo-
nents.

Figs. 5 and 6 present the behavior of our nonlocal patch-
based morphological operators for different images and show
differences between local and nonlocal patch-based processing.
These experiments show dilation , closing (Fig. 5) and lev-
eling operations (Fig. 6). In both figures, initial images (Fig. 5(a)
and first column of Fig. 6) are considered as a function

mapping vertices to gray-scale values.
For local processing, the graphs are weighted 4-adjacency

grid graphs ( for Fig. 5 and for Fig. 6) with weights
computed with the gray-scale value associated to each vertex

. For nonlocal patch-based processing, the graphs
use extended neighborhood with the neighbors selected in a
search window and weights are computed with patches. For
the woman image (Fig. 5) a weighted 25-adjacency grid graph

is considered.
For textured images in Figs. 5 and 6, graphs are based upon

4-adjacency grid graphs coupled with graphs.
Resulting graphs are where the nearest neigh-
bors are selected in a search window of size . For di-
lation and closing cases (Fig. 5), , . For leveling
case (Fig. 6), , . All weights (in both figures) are
computed with patches of size 5 5 that define feature vectors

.
In Fig. 5, a local processing (first row) denoises images but

tends to destroy small structures. Nonlocal patch-based pro-
cessing (second row) clearly have superior behavior and allows
better denoising while preserving fine and repetitive structures.
All results are obtained with same iteration numbers. In Fig. 6,
the second column presents the initial marker obtained
by Gaussian filtering. This experiment shows again the superior
behavior of nonlocal patch-based configuration (last column)
while local leveling (third column) fail to reconstruct the ini-
tial image. Both processing use the same initial marker and all
results are obtained at convergence.

These two experiments clearly show the superiority of non-
local patch-based configurations as compared to local ones.
Moreover, -NN based graphs have the advantage of reducing
vertex degrees in nonlocal patch-based configurations leading
to reduce the computation time.

Image segmentation. With the same ideas, we can apply
nonlocal patch-based configurations for image segmentation
with our formulation of the eikonal equation (20).

Image segmentation can be viewed as a semisupervised
graph clustering formulated as follows. Let be
a weighted graph representing the data to cluster. A semisuper-
vised vertices clustering consists in grouping the set into
given classes. is composed of an initial labeled set and an
initial unlabeled one . The objective is to estimate the
label of the unlabeled data from labeled ones. To address this
problem, methods based upon regularization on graphs have
been proposed so far (see [58] and references therein). Here,
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Fig. 5. Local and nonlocal patch-based morphological image processing: dilation and closing . (a) Initial images. Graph structures at first row: , with
. At second row: , with for woman image; , with for the two textured images.

Fig. 6. Local and nonlocal patch-based leveling. Graph structures for local and
nonlocal processing: , with and , with .

we propose to consider the clustering problem with the eikonal
equation and to compute distance functions where the
set corresponds to initial seeds. At convergence, the final
clustering is obtained for a vertex as the minimal distance
among all the distances i.e., .

The objective of the following experiments is not to solve
a particular image segmentation problem but only to show the
behavior of our methodology in order to segment images and
the benefits of nonlocal configurations.

Fig. 7 shows semisupervised graph clustering applied to non-
local patch-based image segmentation. The first column shows
the initial images with initial seeds superimposed (red for ob-
jects and green for the background). function involved in (20)
corresponds to the initial image gradient amplitude. The three
last columns show segmentation results where white boundaries
correspond to segmented regions. The second column of Fig. 7
shows results corresponding to unweighted local methods. The
third column shows a weighted case. One can note that weights
enable to better capture boundaries information. Last column

Fig. 7. Segmentation with eikonal equation. First column: initial images and
seeds. Next columns: boundaries of segmented regions superimposed on initial
images.

shows nonlocal patch-based configuration. These results illus-
trate the benefits of such configurations especially for textured
and noisy image where local methods fail to found correctly the
desired objects.

2) Region-Based Graphs: Our framework is defined for any
graph. We suggest here to use other image structures such as
regions instead of pixels. To do this, a partition of initial image is
computed (any methods such as watershed or energy partitions
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Fig. 8. Segmentation with region-based graphs. Second column: partitions and reconstructed images. First row: local and nonlocally object segmentation with
two different graphs. Segmentations are obtained by thresholding distance functions. Last two row: nonlocally object segmentation.

Fig. 9. Processing with region-based graphs. (a) Initial image (65 536 pixels).
(b) Partition (11 853 regions i.e., 82% of reduction of vertices). (c) Recon-
structed image with average color. First row: weighted pixel-based graph
computed from (a). Last row: region-based graph computed from
(b) and (c).

[59] can be used). With this partition, we associate region-based
graphs that can be adjacency graph (RAGs) or -NNGs.

Figs. 8 and 9 show examples of image processing and seg-
mentation with region-based graphs.

Examples of partition and reconstructed image with average
color are presented in Fig. 9(b) and (c), and at the second column
of Fig. 8. One can note the reduction of graph vertices with
region-based graph computed from image partition (82% for
Fig. 9 and 98.5% for Fig. 8) as compared to a pixel-based graph
computed from initial image.

Fig. 10. Databases processing. (a) Initial databases and associated -NNGs.
Each vertex corresponds to one digit image of size 16 16 .
Two last rows: morphological processing for each database.

Fig. 9 presents dilation, erosion and closing on pixel and
region-based graphs. Results show similar behavior between
pixel and region-based graph while, in the latter case, com-
putation time is decreased due to the reduced number of ver-
tices to process. Fig. 8 shows advantages to use such graphs
for image segmentation. The second column shows the com-
puted partitions where the region boundaries are superimposed
in white and each region is replaced by the average color of cor-
responding pixels. The first row compares object segmentation
with two different region-based graphs: a RAG (third image)
and a (last image) where the nearest neigh-
bors are selected among all the regions of the partition. In this
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Fig. 11. Data sets alternated filtering and evolution with iterations . (a) Initial
data. (b), (c) and 4. (d) , (e) and 50.

latter case, by extending the neighborhood, one obtains a non-
adjacent object extraction with only one initial seed. The last
two rows show two other examples of nonadjacent object seg-
mentation and illustrate the robustness of our method regarding
seeds initialization.

Finally, we can summarize the advantages of region-based
graphs for image processing and segmentation: 1) Fast com-
putation (as compared to a pixel-based graph) by reducing the
number of vertices to process. 2) Reduced initial seed as shown
in Fig. 8. 3) Nonadjacent object segmentation. In Fig. 8 only one
object is marked and all other ones are extracted even if they are
not spatially close.

B. Arbitrary Data Processing

The proposed methodology is formulated on graphs implying
that any discrete data can be considered. As a result, our formu-
lation provides a natural extension of PDEs-based method to
high dimensional data that can be defined on irregular domains.

1) Database Processing: Fig. 10 presents morphological
operations on real world database. Database used here comes
from the United States Postal Service (USPS). It consists in

Fig. 12. Data clustering with eikonal equation. First row: initial data and asso-
ciated -NNGs. Each last column: initial seed (at top) and obtained clustering.

scanned gray-scale images of handwritten digits from “0” to
“9.” Each image is of size 16 16. In these experiments, we
use two randomly subsampled test sets of 100 samples from
digits “0” and “1–3.” The first row shows the initial data and
the associated -NNG (weighted by ). It is important to note
that each vertex of the graph corresponds to one digit image
sample and is described by a 256-dimensions feature
vector where each feature corresponds to a pixel gray-scale
value. Data are processed directly without any dimensional
reduction step. Second and last rows show dilation, erosion and
opening operations, respectively. One can observe the filtering
effect of the opening which tends to reduce the initial data to
new artificial and uniform samples. Finally, such operations
on databases can be used as preprocessing steps for classifica-
tion or clustering methods and open new insights for MM in
domains such as machine learning or data mining.

2) Data Filtering and Simplification: A possible application
of our framework is the denoising and the simplification of data
sets such as points clouds or meshes. Fig. 11 illustrates a mor-
phological alternated filtering on two data sets that consists in
alternating opening and closing operations. Fig. 11(a) shows ini-
tial data. In order to filter the noisy spiral, a 10-NNG is con-
structed where each vertex is associated to the spatial coordi-
nates of the corresponding data point. For the mesh case, we
use the natural graph representation of meshes. Both graphs are
weighted by function . The two next rows show effects and
evolutions w.r.t. iteration . One can observe the denoising on
the noisy spiral and the simplification on the mesh. In the latter
case, it is important to note that the number of vertices does not
change during the process. Vertices have moved to similar spa-
tial coordinates.

3) Database Clustering: Based upon the idea of image seg-
mentation with the eikonal equation, we apply the same scheme
to cluster and classify databases since our framework is formu-
lated on graphs. Fig. 12 shows two examples of classification
based on the eikonal equation. First row shows the test sets. First
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experiment (a two classes problem) uses two randomly subsam-
pled test sets of 50 samples from digits “0–1.” The second one
(a three classes problem) uses three randomly subsampled test
sets of 30 samples from digits 0“0–1-2.” The next columns show
the classification results where the initial seeds for each class
is located at top. Initial seeds are randomly selected from the
test sets. Results presented here, show good classification re-
sults (the rates are of 93.1% and 100% for the three and the two
classes problems, respectively) even if a simple Euclidean dis-
tance on pixels is used in order to compute the graph weights.
Weight function used here is . For this particular database,
a more relevant distance measure can be used for weighting
the graph that takes into consideration the geometric features
of the images or that is robust to geometric transformations. Fi-
nally, these examples show the potentialities of the eikonal equa-
tion to address high dimensional unorganized data classification
problem.

VI. CONCLUSION

In this paper, a discrete nonlocal PDEs-based MM operators
over weighted graphs is proposed. Our morphological frame-
work adapts and extends PDEs-based dilation, erosion, leveling
and the eikonal equation on weighted graphs.

Our methodology enables local and nonlocal patch-based
configurations for image processing and segmentation. It also
allows the processing and the classification of any nonuniform
multivariate high dimensional data by morphological opera-
tions that can be useful for machine learning.

Through experiments, we have shown the potentialities and
the flexibility of our approach to address image and data pro-
cessing as well as classification. We have shown the efficiency
and the superiority of nonlocal patch-based schemes as com-
pared to local ones for image filtering, reconstruction or seg-
mentation. Advantages of region-based graphs for image pro-
cessing and segmentation have also been illustrated. Finally, the
potentialities of our methodology for database and discrete data
filtering, simplification and clustering by morphological tools
have been presented.
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