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In  this  paper,  we present  a  graph-based  multi-resolution  approach  for mitosis  extraction  in breast  can-
cer histological  whole  slide  images.  The  proposed  segmentation  uses  a multi-resolution  approach  which
reproduces  the slide  examination  done  by a pathologist.  Each resolution  level is  analyzed  with  a focus
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of attention  resulting  from  a coarser  resolution  level  analysis.  At each  resolution  level,  a  spatial  refine-
ment  by  label  regularization  is  performed  to  obtain  more  accurate  segmentation  around  boundaries.  The
proposed  segmentation  is  fully  unsupervised  by using  domain  specific  knowledge.
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ulti-resolution analysis

. Introduction

.1. Clinical context

Breast cancer is the second leading cause of cancer death for
omen. Its incidence increases substantially and continuously
hile the mortality rate remains high despite earlier detection and

dvances in therapeutic care. The identification and the use of reli-
ble prognostic and therapeutic markers is a major challenge for
ecision-making regarding therapy. Proliferation has been shown
o be the strongest prognostic and predictive factor in breast car-
inoma, especially in patients lacking lymph node metastases [1].
his parameter is daily taken into account by the pathologist for
stablishing the histopathological grading of breast carcinomas,
sing enumeration of mitotic figures, through the lens of the micro-
cope. The recent use of immunohistochemical staining of mitosis is
ble to facilitate their detection [2].  Nevertheless, the visual count-
ng method remains subjective [3] and leads to reproducibility
roblems due to the frequent heterogeneity of breast tumors [4].

The recently introduced microscopical scanners allow recording
arge images of the whole histological slides and offer the prospect
f fully automated quantification for a better standardization of

roliferation rate appraisal. If the advent of such digital whole
lide scanners has triggered a revolution in histological imaging,
he processing and the analysis of breast cancer high-resolution

∗ Corresponding author. Tel.: +33 677545227.
E-mail address: vincent.roullier@greyc.ensicaen.fr (V. Roullier).

895-6111/$ – see front matter ©  2011 Elsevier Ltd. All rights reserved.
oi:10.1016/j.compmedimag.2011.02.005
histopathological images is a very challenging task [5,6]. First, the
produced images are relatively huge and their processing requires
computationally efficient tools. Second, the biological variability of
the objects of interest makes their extraction difficult. As a conse-
quence, few works in literature have considered the processing of
whole slide images and most of these works rely only on machine
learning techniques [7–10].

1.2. Our approach

In this work, we present a graph-based multi-resolution seg-
mentation strategy for histological breast cancer whole slide
images. The proposed strategy is based on a top-down approach
that mimics the pathologist interpretation under the microscope
as a focus of attention. The proposed segmentation performs an
unsupervised clustering at each resolution level (driven by domain
specific knowledge) and refines the associated segmentation in
specific areas as the resolution increases. The whole strategy is
based on a graph formalism that enables to perform the segmenta-
tion adaptation at each resolution. Mitosis extraction is performed
at the last resolution. Finally, visualization tools are proposed to
pathologists for establishing the mitotic count.

1.3. Paper description
The paper is organized as follows. A description of the con-
sidered images is presented in Section 2.1.  In this section, we
also describe the visual analysis process performed by patholo-
gists to evaluate mitotic figures proliferation and their inherent

dx.doi.org/10.1016/j.compmedimag.2011.02.005
http://www.sciencedirect.com/science/journal/08956111
http://www.elsevier.com/locate/compmedimag
mailto:vincent.roullier@greyc.ensicaen.fr
dx.doi.org/10.1016/j.compmedimag.2011.02.005


6 al Imaging and Graphics 35 (2011) 603– 615

m
s
m
t
i

2

2

a
m
c
I
a
t
g
t

•

•

•

t

•
•
•

i
p

2

n
e
m
m
w

p
p
v
p
r

1
w
a
t
o

2

p
t

04 V. Roullier et al. / Computerized Medic

ulti-resolution approach. Our graph-based formulation for image
egmentation is presented in Section 3 and its integration into a
ulti-resolution segmentation strategy is detailed in Section 4. Sec-

ion 5 presents visualization tools of extracted mitosis. Evaluation
s presented in Section 6. Last section concludes.

. Image description

.1. Visual grading of histological images

Within the last decade, histological grading has become widely
ccepted as a powerful indicator of prognosis in breast cancer. The
ajority of tumor grading systems currently employed for breast

ancer combine nuclear grade, tubule formation and mitotic rate.
n general, each element is given a score of 1-3 (1 being the best
nd 3 the worst) and the score of all three components are added
ogether to give the breast cancer grading. The usual breast cancer
rading scheme is the Elston–Ellis criterion [11] and is based on
hree separated scores:

Gland (tubule) formation:  one scores the proportion of whole car-
cinoma that forms acini (1: >75%; 2: 10–75%; 3: <10%).
Nuclear pleomorphism:  one scores the nuclear atypia according
to size, shape and chromatin pattern (1: none; 2: moderate; 3:
pronounced).
Mitotic count: one scores the number of mitotic figures per 10
consecutive high power fields (1: 0–9 mitoses; 2: 10–19 mitoses;
3: > 19 mitoses).

The final grading is obtained by adding the three scores. The
otal score is in the range 3–9 and the final obtained grading is:

Grade 1: if total score is 3–5.
Grade 2: if total score is 6–7.
Grade 3: if total score is 8–9.

In this work, we are interested in mitosis detection for help-
ng pathologists to establish an accurate mitotic count [12]. Such a
rocess can be greatly facilitated with the use of whole slide images.

.2. Breast cancer histological whole slide images

Breast cancer tissue samples are sectioned at 5 �m thick-
ess and stained with an immunohistochemical (hematoxylin and
osin) method. A ScanScope CS TM (Aperio®, San Diego, CA) digital
icroscopical scanner is then used to digitalize each slice at 20×
agnification scale and the resulting digital images are compressed
ith a quality of 75% following the JPEG compression scheme.

To facilitate the visualization and the processing, scanned sam-
les acquired by the scanner are directly stored as an irregular
yramid where each level of the pyramid is an under resolved
ersion of the highest resolution image (the pyramid base). Fig. 1
resents such a pyramidal structure and the ratio between each
esolution levels.

The usual size of a compressed whole slide image is about
00–500 Megabytes after compression. However, the resulting
hole slide images are too large in size to be processed or visualized

s a whole. Therefore, the whole slide image is tiled by the scanner
o ease both its processing and visualization: each resolution level
f the pyramid is split into image tiles in a non-overlapping layout.

.3. Multi-resolution approach
Our approach is based on a top-down process that mimics the
athologist interpretation under the microscope as a focus of atten-
ion. Using a focused multi-resolution approach enables to reduce
Fig. 1. Example of pyramidal decomposition of a tissue sample scanned by a whole
slide image scanner.

the amount of data to be processed [13] similarly as the way as
pathologists interpret slide content under a microscope: regions of
interest are determined at low resolution while more subtle cellu-
lar differentiation are evaluated at high resolution. For the special
case of mitotis extraction in breast cancer grading, we  can describe
in details the analysis of a pathologist as follows:

• Separate tissue and slide background.
• Retain only tissue lesions rather than the normal surrounding

tissue.
• In tissue lesions, retain only regions where tumorous cells groups

appear rather than regions with stroma and normal glandular
acini.

• Extract mitotic figures into the previously retained regions.

Finally, this analysis is performed by the pathologist with an
increasing resolution between each of the four steps. Fig. 2 illus-
trates the complete visual analysis process. To be compliant with
the way pathologists examine breast cancer tissue samples, but
also to ease their understanding of an automated processing, our
approach follows exactly this multi-resolution analysis. This multi-
resolution analysis will be based on processing tools that consider
an image as a graph leading therefore to a graph-based segmenta-
tion. Before describing in depth the multi-resolution segmentation,
we provide in next section the key elements of graph-based seg-
mentation as the basis of our multi-resolution approach.

3. Graph-based segmentation

Our strategy for multi-resolution segmentation makes use of
regularization on graphs both for image simplification and segmen-
tation as the core algorithms of our multi-resolution approach. We
recall in this section some basic definitions on graphs, and we define
operators which can be considered as discrete versions of contin-
uous differential operators. We  also describe a set of graph-based
tools by formulating a discrete regularization framework of data
and labels [14,15].

3.1. Preliminaries on graphs

A graph is a structure used to describe a set of objects and the
pairwise relationships between those objects. We  assume graphs
to be undirected, with no self-loops and no multiple edges (see in
[16] for details on theses notions). The objects are called vertices
and a link between two  objects is called an edge. A weighted graph
G = (V, E, w) consists in a finite set V = {v1, . . . , vN} of N vertices, a
set of edges E ⊂ V × V and a symmetric weight function w : E → R

+

satisfying w(u, v) = 0 if (u, v) is not an edge of E. The notation u∼v
is also used to denote two  adjacent vertices. In this paper, Gaussian
kernels are considered as weight functions with � = 20. Let H(V) be
the Hilbert space of real-valued functions defined on the vertices of
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Fig. 2. Visual analysis process performed by a pathologist. Each decision is performed at a higher resolution than the previous one in the decision tree. Level 1: tissue versus
b ls grou
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ackground. Level 2: lesion versus normal surrounding tissue. Level 3: tumorous cel
gures.

 graph. A function f : V → R  of H(V) assigns a real value f (v) to each
ertex v ∈ V . Similarly, let H(E) be the space of real-valued functions
efined on the edges of a graph. Graph structures are extremely
seful and occur naturally while processing digital images: vertices
epresent pixels and edges represent 8-adjacency relationships.

.2. Discrete operators on graphs
Let G = (V, E, w) be a weighted graph, and let f : V → R  be a
unction of H(V). The difference operator of f, noted d : H(V) →
(E), is defined on an edge (u, v) ∈ E by (df )(u, v) =

√
w(u, v)(f (v) −
ps versus stroma and normal glandular acini. Level 4: tumorous cells versus mitotic

f (u)). The weighted gradient operator of a function f ∈ H(V),
at a vertex u ∈ V, is the vector operator defined by ∇wf (u) =
[(df )(u, v1), . . . , (df )(u, vk)]T , ∀(u, vi) ∈ E. The L2-norm of this vec-
tor represents the local variation of the function f at a vertex of the

graph. It is defined by ‖∇wf (u)‖ =
√∑

v∼uw(u, v)(f (v) − f (u))2. Let

p ∈ (0, + ∞ ) be a real number. The weightedp -Laplace operator of a
function f ∈ H(V), noted �p

w : H(V) → H(V), is defined by [14]:
�p
wf (u) = 1

2

∑
v∼u

�f
w(u, v)(f (u) − f (v)), (1)
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ith
f
w,p(u, v) = w(u, v)(||∇wf (v)||p−2 + ||∇wf (u)||p−2). (2)

The p-Laplace operator is nonlinear except for p = 2. In this latter
ase, it corresponds to the combinatorial graph Laplacian which is
ne of the classical second order operators defined in the context
f spectral graph theory [17]. In this paper, we only consider the
ase where p = 2.

.3. Discrete regularization framework

To regularize a function f 0 ∈ H(V) using the p-Laplacian (1),  we
onsider the following general variational problem on graphs:

min
 ∈ H(V)

{
Ew,p(f, f 0, �) = Rw,p(f ) + �

2
‖f − f 0‖2

}
, (3)

The intuition behind regularization is to provide a smoother
ersion of an initial function (with the regularizer term) while keep-
ng it close to the initial function (with the fitting term). The first
erm, Rw,p(f ), is the regularizer and is defined as the discrete Dirich-
et form of the function f ∈H(V): Rw,p(f ) = 1

2

∑
u ∈ V ||∇wf (u)||p. The

econd term is the fitting term. � ≥ 0 is a fidelity parameter called
he Lagrange multiplier which specifies the trade-off between the
wo competing terms. Both terms of Ew,p(f, f 0, �) in (3) are strictly
onvex function of f [18]. By standard argument in convex analysis,
his optimization problem has a unique solution which satisfies, for
ll u ∈ V [14]:

∂

∂f (u)
Ew(f, f 0, �) = �p

wf (u) + �(f (u) − f 0(u)) = 0. (4)

Eq. (4) can be interpreted as the discrete analogue of the
uler–Lagrange equation. Using the p-Laplacian formulation (1) in
4), the optimization problem solution can be rewritten as the solu-
ion of a system of equations. To approximate the solution of the

inimization (3),  we can linearize this system of equations and
se the Gauss–Jacobi method to obtain the following iterative algo-
ithm for p = 2 [14]:

f (0)(u) = f 0(u)

f (t+1)(u) =
�f 0(u) +

∑
v∼u

w(u, v)f (t)(v)

� +
∑
v∼u

w(u, v)

, ∀u ∈ V. (5)

This corresponds to Tikhonov regularization on weighted
raphs. Other classical filters can be recovered with specific
arameters, e.g., with � = 0 and w(u, v) = 1, ∀(u, v) ∈ E, a Gaussian
moothing is obtained. Our regularization framework enables to
mooth the image while preserving its important structures (with
he use of the weight function) and avoiding to be too far from the
riginal image (with the fitting-term).

Fig. 3 presents a regularization result on an image. The image
s globally smoothed while preserving its main elements unlike a
raditional Gaussian smoothing.

.4. Discrete label regularization

The previous discrete regularization can also be adapted to per-
orm image segmentation by discrete label regularization [15].
umerous automatic segmentation schemes have been proposed

n literature and they have shown their efficiency. Meanwhile,
ecent interactive image segmentation approaches have been

roposed. They reformulate image segmentation into label prop-
gation strategies [19–23].  The previously presented discrete
egularization framework can be naturally adapted to address
his learning problem for segmentation by label regularization. To
ging and Graphics 35 (2011) 603– 615

accommodate the previous discrete regularization framework to
label regularization, we must reformulate the problem. The label
regularization of a set of vertices V composed of labeled and unla-
beled data consists in grouping the whole set V into k classes with
k, the number of classes (known beforehand). The aim is therefore
to estimate the unlabeled data from labeled ones.

Let C = {ci}i=1,...,k be the set of initial labeled vertices and let V \ C
be the initial unlabeled vertices. This situation can be modeled by
considering k initial label functions (one per class) f 0

i
: V → Z;  with

i = 1, . . .,  k. For a given vertex u ∈ V, if u is initially labeled then

f 0
i (u) =

{
+1, if i ∈ ci

−1, otherwise.
(6)

If u is initially unlabeled (i.e., u ∈ V \ C) then f 0
i

(u) = 0. Then, the
vertex labeling is performed by k regularization processes esti-
mating membership functions fi : V → R  for each class i. Using the
previously proposed discrete regularization framework, this is for-
malized as follows:

min
fi ∈H(V)

{
Rw,p(fi) + �

2
‖fi − f 0

i ‖2
}

, (7)

We use the discrete diffusion process (5) to compute each min-
imization. At the end of the label propagation process, the class
membership probabilities of each vertex to a given class can be
estimated. Then, the final classification can be obtained for a given
vertex u ∈ V by the following formulation. For all i ∈ 1, . . .,  k, the label
assigned to a vertex u is:

argmax
i

⎧⎪⎪⎨
⎪⎪⎩

fi(u)∑
i

fi(u)

⎫⎪⎪⎬
⎪⎪⎭

(8)

The parameter � is used to tune the dependance to the initial
labels. When � > 0, the label regularization is highly oriented by
initial labels. When the � = 0, the algorithm has the ability to modify
the initial labels. Fig. 4 shows an example of label regularization
with different values of �. One can see that the label regularization
has enabled to refine the boundaries. The less the value of � the
more the label change and the more the boundaries are smoothed.

4. Multi-resolution segmentation approach

In this section, we  show how the previous regularization frame-
work on graphs can be used within a multi-resolution segmentation
process for mitotic cell extraction.

4.1. Principle

As it has been previously pointed out, a multi-resolution seg-
mentation process is a natural approach to analyze whole slide
images [13,24]. Indeed, we  have described in Section 2.1 the whole
slide image analysis visual process performed by pathologists. This
process is a multi-resolution process: a pathologist determines
regions of interest at low resolution while cellular classification is
performed at high resolution.

Our proposed multi-resolution segmentation process is based
on a top-down segmentation [24] that mimics the interpretation
process performed by pathologists (see Fig. 2).

According to Fig. 2, our multi-resolution approach considers
the images at four increasing resolution levels. First level discrim-
inates the background of the slide from the tissue. Second level

discriminates, inside the previously extracted tissue region, the
normal surrounding tissue from the lesion. Third level discrimi-
nates, inside the previously extracted lesion region, the tumorous
cells groups from the stroma. Fourth level discriminates, inside
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Fig. 3. Illustration of the regularization process after 10 iterations. (a) Initial image, (b) regularized image (p = 2, � = 0.01, w(u, v) is a Gaussian kernel with � = 20), (c) traditional
Gaussian filtering (p = 2, � = 0 and w(u, v) = 1).

Fig. 4. Illustration of the label regularization process. (a) presents the initial image with labels superimposed, (b)–(c) present the initial image with regularized labels
superimposed (with � = 0. and � = 2.).
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he previously extracted tumorous cells groups, the tumorous cells
rom the mitotic cells. Figs. 10 and 11 provide results for several
hole slide images.

At each resolution level, the differentiation between the differ-
nt components (inside specific regions) is performed by: discrete
egularization, unsupervised 2-means clustering, and label regu-
arization in a narrow band around the boundaries to refine the
oundaries of the extracted components. We  detail all these steps

n the following.

.2. The whole multi-resolution segmentation

The whole segmentation strategy is summarized by Algorithm
. The resolution level of processing is denoted by i. Level 1 is the
oarsest resolution and level 4 is the finest. Since images are tiled,

 tile t of an image at the i th level is denoted by Ii,t. If a superscript
s added to Ii,t, this denotes the result of the processing of a tile. At

 given level i, the processing runs into three steps:

tep 1: The histogram of the image at the i th resolution is
constructed from regularized tiles in specific regions of
interest. Regions of interest are determined from the pre-
vious level segmentation.

tep 2: Once the histogram of the image at the i th resolution has
been built, a 2-means clustering is performed on this his-
togram and two cluster centers are obtained.

tep 3: Each tile of the image at the i th resolution is partitioned
into two classes according to the cluster centers obtained
at step 2. This partition is spatially refined on the level of
its boundaries.

lgorithm 1. Multi-resolution WSI  segmentation
1: for Level i = 1 to 4 do
2: {STEP 1}
3: InitializeHistogram Hi of level i
4: for Each tile t of level ido
5: Ip

i,t
= ReplicateClustering(Ir

i−1,t
) when i > 1

6:  if i=1 or Ip
i,t

contains pixels of label ithen
7:  Is

i,t
= Regularization(Ii,t )

8: Update Hi with pixels of Is
i,t

(of label i in Ip
i,t

when i > 1)
9: end if
10: end for
11: {STEP 2}
12: {C1

i
, C2

i
} = Compute  − 2  − MeansClustering(Hi)

13:  {STEP 3}
14: for Each tile t of level ido
15: if Ip

i,t
contains pixels of label ithen

16: Ic
i,t

= Apply  − 2  − MeansClustering(Is
i,t

, C1
i

, C2
i

)
17: Ir

i,t
= SpatialClusteringRefinement(Ic

i,t
, Ii,t )

18: else
19: Ir

i,t
= Ip

i,t

20: end if
21: end for
22: end for

.3. First step: histogram construction

As a first step, we construct a color histogram of the image at
he i th resolution level. Since the images are tiled, we  run through
ll the tiles to construct the histogram incrementally (Update in
lgorithm 1). We  mention now how this histogram is constructed.

First, this histogram is not build directly from the raw tiles but
rom regularized version of the tiles (Regularization in Algo-

ithm 1). The regularization of each tile is performed by discrete
raph regularization with the image modeled as a weighted 8-
djacency grid-graph with � = 0.01. The effect of the regularization
rocess was previously illustrated in Fig. 3. The aim of the reg-
ging and Graphics 35 (2011) 603– 615

ularization step is to simplify the color distribution of colors in
their feature space (i.e., in the histogram Hi) for a further eas-
ier clustering in step 2. Fig. 5 illustrates this. Fig. 5a presents the
distribution of the colors in the RGB color space for an image at
the first level of resolution (i.e., the colors of Fig. 3a), and Fig. 5b
shows the distribution of colors after regularization (i.e., the colors
of Fig. 3b). One can see that the color outliers have disappeared in
the simplified color distribution: this will further facilitate the task
of the step 2 in Algorithm 1 performing an unsupervised 2-means
clustering.

Second, the histogram is constructed only from specific regions
of interest except for the first level. At the first level (i.e., i = 1) the
histogram is constructed from all the tiles. This histogram will be
used in steps 2 and 3 to obtain a segmentation Ir

1,t between tissue
(label 2) and background (label 1) for each tile I1,t of the first level.
At the second level of resolution, the segmentation obtained at the
previous level is replicated on each tile I2,t according to the increase
of resolution (ReplicateClustering in Algorithm 1). Then, the
histogram is constructed only inside regions that were considered
as tissue at the previous level of resolution. As a consequence, the
histogram considers only pixels that had the label 2 in the segmen-
tation obtained at the previous resolution (expressed by the tests
on the pixel labels in the first step of Algorithm 1). This principle
is also applied for the next levels. To illustrate this, Fig. 6a presents
the segmentation obtained at the first level of resolution. Fig. 6a
shows the tiles that are retained for the construction of the his-
togram at the second level of resolution: tiles that do not contain
pixels of label 2 (i.e., the tissue depicted in cyan) are not considered.
Fig. 6c and d illustrates again this principle but for the third level of
resolution: tiles that do not contain pixels of label 3 (i.e., the lesion
depicted in yellow) are not considered.

4.4. Second step: histogram 2-means clustering

Once the histogram Hi is obtained at a given resolution level i,
this histogram is clustered into two  classes by using a k-means clus-
tering with k = 2. The advantages of the k-means algorithm are its
simplicity and speed which allows it to run on large datasets. How-
ever, this algorithm is not robust to the initialization of the centers
of clusters. So, we use a robust version of the k-means algorithm
that is not sensitive to initialization [25] and considers an histogram
to perform the clustering. This clustering provides us the centers
{C1

i
, C2

i
} of the two extracted classes.

We mention now why  we  prefer to perform the 2-means clus-
tering on the histogram of the considered tiles at one level of
resolution i. If we had performed naively a 2-means clustering
on each tile, we would have obtained strong problems at tiles’
boundaries since the content of one sole tile is not necessarily repre-
sentative of the global information. For example, the tile can contain
only one type of structure we want to extract but if this tile is treated
as a sole, two  clusters will be extracted even if it has not to be the
case. Fig. 7a–c illustrates this for the segmentation at the first res-
olution level. One can easily see that incoherent segmentation is
obtained for the adjacent tiles. This illustrates the advantage of per-
forming the clustering on the histogram rather than tile by tile (as
this classically performed on whole slide image e.g., in [13]): this
ensures that the clustering is coherent on the whole i th image.

Finally, we  detail the color feature space considered for the
clustering at each resolution level. For levels 1–3, the clustering is
performed on RGB feature vectors. For level 4, dedicated to mitosis
extraction, the clustering is performed on a specific feature scalar,

the Red-Cyan difference, that proved its robustness in previous
works [26]. Indeed, mitosis are visually recognizable by a color close
to the brown that can be easily stressed by chromatic information
with the Red-Cyan difference (2R  − G − B) (see Fig. 8).
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Fig. 5. The distribution of colors in the RGB color space bef

.5. Third step: partitioning and spatial refinement

From the cluster centers {C1
i

, C2
i
} extracted at one resolution

evel i, we run through the tiles of the i th image. For each considered
ile, pixels are affected to their closest cluster center (Apply-2-
eansClustering in Algorithm 1). For unconsidered tiles, the
abels are replicated from tiles of the previous level. The cluster-
ng being performed in the color feature space for considered tiles,
o spatial information is taken into account and the obtained seg-
entation is not accurate around boundaries (neither for pixels

ig. 6. Illustration of the retained regions for processing: (a) and (c) present the segmen
onsidered for the segmentation at the second and third resolution level: black areas corr
 and after (b) image regularization for the images of Fig. 3.

labels that have been replicated from the previous level). To avoid
this effect, we use our discrete label regularization described in
Section 3.4 to modify the clustering results by taking into account
spatial information in the image domain. Therefore, we adapted
our label regularization to have its range limited to the bound-
aries of the extracted elements (SpatialClusteringRefinement

in Algorithm 1).

Let Vi = {ui
1, . . . , ui

N} denote the set of vertices of a grid-graph
Gi = (Vi, Ei, w) associated to a tile at a given i th resolution
level.

tation obtained at the first and second resolution levels, (b) and (d) show the tiles
espond to unconsidered tiles where pixel label replication is used.
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ig. 7. Illustration of the inaccuracy of tile by tile clustering at the first level of reso
ile  by tile processing: artificial divisions appear.

Each vertex is associated with a cluster label l : V → Z previously
btained by 2-means clustering or a replication of labels at lower
esolution. The set of vertices associated to one cluster j is: Vi

j
=

u ∈ Vi : l(u) = j} where j = 1, . . .,  C with C the final number of classes.
The aim of the clustering spatial refinement is to modify the

abels assigned to vertices in order to have a clustering that is better
elineated along its boundaries. Therefore, we use the discrete label
egularization formulation previously presented in Section 3.4.  In
his case, all the vertices are initially labeled and their label can be

odified by the regularization process (5) with � set to zero.
Moreover, since the spatial refinement has to be performed only

round the boundaries of objects, we consider a specific grid-graph
hat is a subset of the whole grid-graph. The set of vertices that
orresponds to the boundaries between two different clusters at i
h resolution level is defined by:

Vi = {u ∈ Vi : ∃v ∈ Vi with (u, v) ∈ Ei and l(u) /= l(v)}.
The set of vertices that belongs to a narrow band of size 2ı + 1
round the set ∂Vi is defined by:

+Vi = {u ∈ Vi : ∃v ∈ ∂Vi with d(u, v) ≤ ı}

ig. 8. Illustration of mitotic figures extraction. (a) Initial mitosis. (b) Red-Cyan difference 

etection with the initial image and the image with detected mitosis superimposed in re
eferred  to the web  version of this article.)
. (a) The tiled image of the first level. (b) Accurate global processing. (c) Inaccurate

where d(u, v) is the distance of the path

{u = v1, v2, . . . , vn = v}

with (vj, vj+1) ∈ Ei, ∀i. The set of edges Ei+ is defined as the subset
of edges in Ei that connects two vertices of ∂+Vi:

Ei+ = {(u, v) ∈ Ei : u, v ∈ ∂+Vi}.

The clustering spatial refinement is then accomplished by k reg-
ularization processes on the graph Gi+ = (∂+Vi, Ei+, w) as described
in Section 3.4.  The clustering spatial refinement is illustrated in
Fig. 9. From an initial segmentation (Fig. 9a), a narrow band is
considered around the boundaries (Fig. 9b) and the labels are mod-
ified by discrete regularization (Fig. 9c) to obtain more accurate
boundaries (Figs. 10 and 11).

5. Visualization of mitotic figures
Once all the mitosis have been extracted at the highest resolu-
tion using our top-down multi-resolution graph-based extraction
algorithm, the pathologist has to visualize them to establish by
himself the mitotic score. Indeed, in the Elston–Ellis criterion, the

transformation. (c) 2-Means clustering of (b). (d)–(g) show two examples of mitosis
d. (For interpretation of the references to color in this figure legend, the reader is
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Fig. 9. Illustration of the clustering spatial refinement of a tile. (a) A segmentation obtained for a tile by Apply-2-MeansClustering in Algorithm 1. (b) Superimposed
narrow  band of (a), (c) clustering spatial refinement of (b) with the original boundary of (a). See the electronic version of the paper for a better visualization.

Fig. 10. Illustration of the multi-resolution clustering process. First row: initial images. Second row: first resolution segmentation results (background in pink, tissue in
cyan).  Third row: second resolution segmentation results (lesion in yellow). Fourth row: third resolution segmentation results (tumorous cells groups in dark blue, stroma
in  yellow). Fifth row: fourth resolution segmentation results (tumorous cells in green and mitotic figures in red). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 11. Detailed illustrations of the multi-resolution clustering process on cropped images. First row: cropped images at the third resolution level. Second row: cropped
segmentation results at the third resolution for images of the first row. Third row: cropped images at the fourth resolution level. Fourth row: cropped segmentation results
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t  the fourth resolution for images of the third row. Colors in the segmentation res
roups  in dark blue, tomorous cells in green, mitotic figures in red. (For interpretatio
f  this article.)

itotic count is established only on 10 consecutive high power
elds in the most mitotic area. These zones have to be chosen by
he pathologist. As a consequence, we do not compute directly a

itotic score but help pathologists in doing it. To do so, we provide
wo visualization tools for pathologists.

.1. Mitosis distribution visualization

The first one enables the pathologist to evaluate the global repar-
ition of detection mitosis on the whole slide. This visualization
ool is necessary to help the pathologist in choosing the areas for
stablishing its mitotic count. This visual information is provided

y superimposing a graph on the whole slide image. The graph is
onstructed as follows. Each detected mitosis is represented by a
ertex of the graph. A Voronoi map  is computed on the vertices
oordinates and the associated Delaunay graph is obtained. This
rrespond to: pink for background, tissue in cyan, stroma in yellow, tumorous cells
he references to color in this figure legend, the reader is referred to the web version

enables the pathologist to evaluate zones on the whole slide image
where the mitotic activity is important by the superposition of the
Voronoi distance map  on the whole slide image (Fig. 12). Using this
visualization tool, the pathologist can choose areas on the whole
slide and obtain a mitotic count for the Elston–Ellis criterion.

5.2. Mitosis phases visualization

The second visualization tool enables the pathologist to see
the extracted mitosis altogether on a single 3D projection to
appreciate their aspect (e.g., to differentiate the different mitotic
phases: prophase, metaphase, anaphase). To do this, each mitosis

is described by a Locally Binary Pattern (LBP) histogram [27,28] in
the HSL color space. This histogram is used as an input for non-
linear dimensionality reduction by Laplacian Eigenmaps [29] with
distances between histograms expressed by the Chi square statis-
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ig. 12. Illustration of visualization tools of extracted mitotic figures. (a)–(c): Distanc
itotic  figures by dimensionality reduction for the mitosis of (a)–(c) (see electronic

ic. Once the dimensionality reduction has been performed, the
athologist can visualize simultaneously all the mitotic figures of a
hole slide image in the form of a 3D projection where each mitosis

s projected at coordinates defined by the nonlinear dimensional-
ty reduction. In this projection, mitosis of similar texture will be
rouped together. With this tool, the pathologist can estimate the
umber of mitosis in each mitotic phase. If the pathologist needs it,
he set of mitosis can be partitioned into two sets with a normal-
zed cut criterion [30]. This enables to obtain two sets of mitosis

ith low texture information (prophase and metaphase) or high
exture information (anaphase). These two sets are shown by col-
ring the bounding box of the mitosis in the projection (Fig. 12g–i).
dentifying the different mitotic phases is useful for evaluating their
elative frequency. This can provide information on the length of
ach phase and account for the kinetics of proliferation. This infor-
ation is not a criterion in the Elston–Ellis grading but this provides

n information that is useful to evaluate the evolution in time of a
umor.

. Evaluation results

In terms of processing time, our algorithm takes at most 30 min
on a Intel Core is 2.4 GHz with 4 Gb RAM) to process a multi-
esolution pyramidal image having 45, 000 × 38, 000 pixels at its
nest resolution. This processing time is obtained without any
arallelization that can be easily integrated within our algorithm
ince the images are tiled. Regarding memory usage, our algorithm
anipulates simultaneously a 3D-histogram for the clustering (of

ize 2563 ∼ 48 Mb), and several instances of a tile of size 256 × 256
for the original, the regularized image, the clustered one and the
patially refined one) giving a size of ∼2 Mb.  The whole memory
anipulated by our algorithm during the processing is therefore of
50 Mb  which is really low.

The evaluation of the accuracy of an image processing on whole

lide images is very difficult. Indeed, whole slide images being
ery large, a quantitative quality control becomes very complex
o achieve and almost impossible regarding the thousands of ele-

ents to evaluate. To cope with this problem, sampling methods
s and Delaunay graphs of the mitosis distribution. (d)–(f): Visualization of extracted
on of the paper for better visualization).

of stereology [31] can be used to limit the tedious quality control
work. On whole slide images, a stereological-based quality control
consists in superimposing a grid on the whole slide image at full-
resolution and evaluating the quality of the processing only in the
areas that overlap the grid. Two  sorts of grids can be used [32]: a
grid of points allows to compute fractions of surface, a grid of frames
allows to compute densities. We  have considered both these types
of grid for evaluation of our segmentation scheme (Fig. 2). Eight
whole slide images of different cancer grades have been consid-
ered for the evaluation by one pathologist. After a first qualitative
visual evaluation, pathologists agreed that the segmentation results
were very good for levels 1 (tissue versus background) and 2 (lesion
versus normal surrounding tissue) and do not need to be quanti-
tatively evaluated. Therefore, we focused only on the evaluation of
the segmentation for level 3 (tumorous cells groups versus stroma)
and level 4 (mitotic figures versus other cells). For the evaluation of
the segmentation performed at level 3, a point grid is used to esti-
mate the fraction of surface of correctly detected tumorous cells
groups. For the evaluation of the segmentation performed at level
4, a frame grid is used to evaluate the density of correctly detected
mitosis. Fig. 13 shows the principle of stereological evaluation with
point or frame grids using the Stereology Software module of Adcis
and Aperio® Technologies, Inc.

6.1. Evaluation of tumorous cells groups detection

As previously explained, a point counting stereological evalua-
tion is conducted to quantify the tumorous cells groups detection.
When a pathologist performs this evaluation, for each point of
the grid, he specifies if the structure detected at the coordinates
of this point corresponds to true/false positive/negative. To better
understand the results of the stereological evaluation, two mea-
sures are used. Sensitivity and specificity are statistical measures of
the performance of a binary classification test. Sensitivity measures

the proportion of actual positives which are correctly identified as
such. Specificity measures the proportion of negatives which are
correctly identified. Given TP the number of true positive, FP the
number of false positive, TN the number of true negative, and FN
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Fig. 13. Illustration of the stereological segmentation quality evaluation for grids of
points or frames.

Fig. 14. Sensitivity and specificity for evaluation of the segmentation of tumorous

cells groups according to grades estimated by pathologists.

the number of false negative, sensitivity is defined as TP/(TP + FN)
and specificity is TN/(TN + FP).  With these values, sensitivity and
specificity measures are obtained for the detection of tumorous
cells groups (see Fig. 14). As one can see, our proposed segmenta-
tion process has a good sensitivity (>70%) for Grade 1 and Grade
3. Sensitivity is around 60% for the Grade 2. Whatever the grades,
specificity is around 80%. We  can conclude that our method work
reasonably well for Grades 1 and 3 but has to be improved for Grade
2 that can exhibit very different tissue organization. For example,
the first case of Grade 2 in our database is an invasive tubular tumor
that produces aligned tumorous cells, while our method is designed
to detect massive tumorous groups of cells.

6.2. Evaluation of mitotic figures extraction

A frame counting stereological evaluation is conducted to quan-
tify the extraction of mitotic cells. However due to the sparseness
and low number of mitosis for Grade 1 and 2, this type of stere-
ological evaluation is not adapted (results will not be statistically
significative) and we have performed the evaluation only for Grade
3 that exhibits much more mitosis. It appears that our method is
very specific and does not make any false positive. However it can
miss some mitosis leading to an average detection rate of 70%. To
better understand the reasons for our method to miss the extraction
of some mitosis, pathologists have evaluated these cases. First, it
appears that mitosis that are in early prophase are not detected due
to the fact that immunohistochemical staining is low. These errors
can be easily corrected by performing a less strong regularization
before clustering. Second, with our multi-resolution algorithm, we
try to detect mitosis only in regions that were previously extracted
at level 3 as containing tumorous cells groups. However, as we  have
seen in the previous evaluation of tumorous cells groups detec-
tion, some regions that contain tumorous cells are not accurately
detected and therefore no mitosis extraction is performed in these
areas. These errors of detection can be corrected only by correcting
the detection of tumorous cells groups.

To conclude these evaluation results, the whole multi-
resolution works reasonably well. Three levels of segmentation can
be considered as good: level 1 (tissue versus background), level
2 (lesion versus normal surrounding tissue) and level 4 (mitotic
figures versus other cells). However the segmentation obtained in
level 3 (tumorous cells groups versus stroma) has be enhanced to
better detect zones containing tumorous cells groups especially for

Grade 2. This will be achieved in future works by integrating texture
information in addition to color features.
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. Conclusion

In this paper, a multi-resolution image analysis strategy for
utomatic enumeration of mitotic figures on whole slide images
s proposed. The whole classification process begins with the low-
st resolution image and moves to higher resolution into regions of
nterest gradually identified. Graph-based regularization provides a
nified formalism for both image simplification and spatial bound-
ry refinement. Contrary to methods that can be found in literature,
ur method is completely unsupervised and has the advantage of
educing the amount of data to be processed at each resolution level
y selecting regions of interest.

We also proposed two methods for the visualization of mitotic
gures. The first method allows to visualize the distribution of
itosis on the tissue samples. The second method groups mitosis

ccording to texture parameters.
Evaluation results have shown that our method is globally

fficient, but some improvement is needed for the detection of
umorous cells groups, especially for tumors of Grade 2. Future
orks will concern the integration of texture information for the

nhancement of tumorous cell groups as well as the automation of
he other scores of the Elston–Ellis grading systems.
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