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ABSTRACT: In this article, the color space influence on different

methods of morphological hierarchical segmentation is studied. For

this purpose, several experimental studies are carried out on hundred

images of the ‘‘Berkeley Segmentation Dataset and Benchmark’’

(Berkeley). On one hand, four usual and representative color spaces

(RGB, YCbCr, L*a*b*, IHSL) are considered. On the other hand, three

different morphological hierarchical segmentation schemes are con-

sidered. These later are the quasi flat zones, the nonparametric hier-

archical watershed (waterfall algorithm) and the nested homogeneous

connections. As one could expect it, the different morphological hier-

archical segmentation schemes do not have the same behavior in dif-

ferent color spaces. We conclude by proposing a ranking of color

spaces according to the considered morphological hierarchical seg-

mentation schemes. VVC 2010 Wiley Periodicals, Inc. Int J Imaging

Syst Technol, 20, 167–178, 2010; Published online in Wiley InterScience

(www.interscience.wiley.com). DOI 10.1002/ima.20233
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color image segmentation; color spaces; nested homogenous

connections

I. INTRODUCTION

Image segmentation consists in partitioning an image in more or

less regular or coherent zones according to a given criterion. Thus,

one usually seeks an image partition in zones whose values follow a

given model of organization. Automatic segmentation of images is

a central problem in image processing since a partition of the image

in regions makes the extraction of the primary visual components

from an image possible; these later being used to identify and rec-

ognize objects of interest. However, there is a gap between the

image itself and its description as a sole partition of the image into

several regions. A way of circumventing this gap is to concentrate

on region segmentation on one hand and on perceptual groupings

extracted by a hierarchical vision of images on the other hand. The

union of regions is a group of elements which is also a region at a

given scale, with local inner properties and global ones according to

its neighborhood. Mostly, low-level image segmentation algorithms

cannot directly cope with this semantic gap as it is very difficult to

directly construct the best image partition (if there is one). Thus, it

is necessary to deal with hierarchical methods which produce a

multiscale image segmentation. In this article, we take a morpho-

logical point of view of hierarchical segmentation (Serra, 2006;

Meyer, 2001). However, when considering morphological segmen-

tation, one needs to work on complete lattices (Ronse, 1990) and

the problems aspects of the classical gray-scale morphological algo-

rithms to color ones arises (Plataniotis and Venetsanopoulos, 1998).

This extension is not simple (Angulo, 2005) and still unsolved

(Serra, 2005; Lezoray et al., 2005a). A lot of articles in the literature

consider the influence of color spaces for simple morphological

operations such as erosion or dilatation (Peters, 1997; Chassunot

and Lambert, 1998; Talbot, 1998; Comer and Delp, 1999; Ortiz

et al., 2001; Tsalides, 2002; Lezoray et al., 2005a). Few works con-

sider the influence of color spaces on sets of nested segmentations

generated by morphological hierarchical segmentation approaches

(Angulo and Marcotegui, 2005). Therefore, we propose a more

in-depth study of the color space influence on several different mor-

phological hierarchical segmentation schemes all based on the con-

nective criterion principle of Serra (Serra, 2006). The article is

organized as follows. In Section II, we recall the basic relations

allowing to shift from the RGB or the XYZ color spaces to a given

color space among the ones we selected (YCbCr, L*a*b*, IHSL). In

Section III, the principles of morphological hierarchical segmenta-

tion are detailed and three classical connective criteria are

reviewed: the quasi flat zones (Salembier and Serra, 1992; Crespo

et al., 1997; Meyer, 1998), the nonparametric hierarchical water-

shed: waterfall algorithm (Beucher, 1994; Angulo and Serra, 2003),

and the nested homogeneous connections (Meurie 2005; Lezoray

et al., 2006). To finish, several experimental studies are carried out

on hundred images of the ‘‘Berkeley Segmentation Dataset and

Benchmark: BSDB’’ (Berkeley) and the color space influence on

the three above mentioned methods of morphological hierarchical

segmentation are analyzed on the whole database.Correspondence to: Cyril Meurie; e-mail: cyril.meurie@utbm.fr
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II. COLOR SPACES

The main aim of this work is to show the color space influence on

different methods of morphological hierarchical segmentation, we

recall some basic concepts on color spaces used in this article. To

be rather exhaustive without having to test all existing color spaces

(Sharma and Trussel, 1997), we used four representative color

spaces belonging to the color spaces families described by Vanden-

broucke et al.(2000). The definitions of a luminance–chrominance

space (YCbCr), a perceptually uniform color space (L*a*b*) and a

perceptual coordinate color space (IHSL) are recalled.

A. YCbCr COLOR SPACE

The YCbCr color space (Plataniotis and Venetsanopoulos, 2000;

Lukac and Plataniotis, 2006) is the international standard dedicated

to the digital coding of numerical television images. It has the partic-

ularity to not impose any rule about the reference white comparing to

other color spaces dedicated to television. The transformation of

RGB into YCbCr color space is provided by the following relation:
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B. L*a*b* Color Space. The L*a*b* color space is an approxi-

mation of the Adams-Nickerson’s color space in which the percep-

tual amplitude of the color is defined in terms of opposite colors

scales covering the total spectrum seen by the human eye. The

transformation to the L*a*b* system is obtained by the following

nonlinear relations (Wyszecki and Stiles, 1982):
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L denotes the luminance and the black–white opposition by a value

between 0 (black) and 100 (white). a* measures the green-red oppo-

sition by a value between 2100 and 1100 (a* is positive if the

color contains red, negative if the color contains green and null if

none of both). b* measures the blue–yellow opposition by a value

between 2100 and 1100 (b* is positive if the color contains yel-

low, negative if the color contains blue and null if none of both).

X0, Y0, Z0 denotes the XYZ coordinates of the illuminate (illuminate

E for our study).

C. IHSL Color Space. The IHSL color space has been proposed

by (Hanbury and Serra, 2001a; Hanbury and Serra, 2001b; Hanbury,

2003) is an improvement of the HSI color space to overcome its limi-

tations [see in (Hanbury and Serra, 2001a; Hanbury and Serra,

2001b; Hanbury, 2003) for further details]. This color space is now

extensively used in mathematical morphology (see in Angulo, 2005)

for an in-depth complete review). The transformation of RGB into

the IHSL color space is provided by the following relations:

L ¼ 0:21263R þ 0:71523Gþ 0:07223B

S ¼ maxðR;G;BÞ � minðR;G;BÞ

H ¼
360� � H1 if B > G

H1 if B < G

�
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R� ðGþBÞ
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III. Hierarchical Segmentation of Color Images. In this sec-

tion, the principles of morphological hierarchical segmentation are

recalled (Meyer, 2001a,b). We then focus on the definition of con-

nective criterion and recall two connections: threshold connections

[quasi flat zones (Salembier and Serra, 1992; Crespo et al., 1997;

Meyer, 1998)] and pathwise connections (nonparametric hierarchi-

cal watershed also called waterfall (Beucher, 1994; Angulo and

Serra, 2003). Finally, we present a criterion introduced in (Lezoray

et al., 2005b; Meurie, 2005; Lezoray et al., 2006), and which

extracts the homogeneous zones of an image.

A. Partition of Image. The traditional problem of the automatic

segmentation of images is generally considered like a division of

the image in disjoined areas, the result being a partition of the

image domain. An image I is a set of pixels I 5 {p1, p2,. . ., pn} and

a region R is a subset of the image pixels composed of |R| pixels.

Regions are therefore sets of pixels which usually fulfill a given ho-

mogeneity criterion.

Definition 1: Partition (Zucker, 1976). A partition P is a set of

regions P 5 {R1, R2, . . ., Rk} so that:

1. the union of the partition regions provides the initial set:

I ¼
Sk

i¼1

Ri;

2. regions are disjoined: Vi, j, i= j, Ri\ Rj 5 ø

Several algorithms can be used to segment an image and

thus to create a partition (Serra, 2005). But these algorithms can

also define, while exploiting their parameters, a stacking of par-

titions of increasing levels called a hierarchy of partitions. In

mathematical morphology, it is important to define an ordering

relation between two partitions to have a complete lattice of par-

titions: a partition P is included in a partition Q if every regions

Rj
p is completely included in a region Ri

q. With this property, we

can define a hierarchy of nested partitions for an image. Let H

be a set of partitions associated to an image, H is a hierarchy

of nested partitions if it is possible to establish an inclusion

order between any pair of H elements. It means that two regions

from two different partitions of a hierarchy are either disjoined

or included one in to the other.

Definition 2: Hierarchy of Nested Partitions (Horowitz and

Pavlidis, 1976). A hierarchy of nested partitions is a set of parti-

tions H5{P1, P2, . . ., Pl} so that the regions of the partition

Pi5{R1
i, R2

i, . . ., Rk
i} are all included in the regions of the partition

Pj5{R1
j, R2

j, . . ., Rk
j} with j[i, k[k0 and Rm

i
( Rp

j or Rm
i
\ Rp

j
5 ø.

Pi is called the ith level of the hierarchy, P0 if the lowest one

and is the finest partition, Pl is the highest level of the hierarchy and

is the coarsest partition. The regions of the lowest level being

always included in higher level regions, the regions of the (i11)th
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partition can be obtained by merging ones of the ith partition.

Therefore, a hierarchy of partitions is naturally represented by a

stack of region adjacency graphs (RAG) also called an irregular

pyramid (Jolion and Montanvert, 1992). Links between regions that

merge from one level to the next one are contained in a so-called

contraction kernel (Kropatsch, 1995).

In mathematical morphology, to have an ordering relation

between successive levels of the hierarchy implies that the later

forms a complete lattice. The main morphological criteria that

define hierarchies of partitions are based on connections (connec-

tive criteria), (Serra, 2000; Serra, 2006). This enables to divide an

image into zones according to a given criterion. For instance, an

image I is divided into flat and connected zones when a partition Pi

is created, so that for every x, the region R e Pi with x e R is the

highest connected component which includes x and where the

image I is constant and always equal to x. Whatever the connective

criterion, there is always a way of partitioning an image into regions

that fulfill that criterion.

Definition 3: Connective criterion (Serra, 2006). A criterion

r : F 3 P(E)? [0,1] is connective when, for each f e F, the sets A

such that r [f, A] 5 1 form a connection, i.e.,

1. when r is satisfied on the class S of the singletons and by the

empty set, V f e F, {x}e S )r [f{x}] 5 1

2. when for any function f e F and for all families {Ai} of P(E)

for which the criterion r is satisfied, we have\ Ai= 0 and

^r [f, Ai]51) r [f,|Ai]5 1

In other words, when a connective criterion S is satisfied by a

function f on a family {Ai} of regions of the space, and if all these

regions have one common point, then it is also satisfied on the

union|Ai. A zone A is said to be homogeneous according to f and

r when r [f, A]5 1.

Definition 4: Connective Criterion for Segmentation

(Serra, 2006). Let us consider two arbitrarily sets E and T, and a

family F of functions f: E ? T and let r be a criterion on class F.

Then the three following statements are equivalent:

1. Criterion r is connective,

2. For each function f e F, those sets on which criterion r is

satisfied constitute a connection C, C 5 {A | A e P(E) and

r [f, A]51}.

3. Criterion r segments all functions of the family F.

In the following subsection, we recall the two main morphologi-

cal connective criteria for segmentation: the flat zones and the non-

parametric hierarchical watershed (waterfall algorithm). A third

connective criterion called nested homogeneous connections is pre-

sented and whose behavior is in between the two above mentioned.

B. The Flat Zones and Quasi Flat Zones. The flat zones of an

image I are the maximal connected components having a constant

value and were introduced by Salembier and Serra [(Salembier and

Serra, 1992; Crespo et al., 1997). The flat zone concept relies there-

fore on a threshold connective criterion. Using directly the partition

of an image in flat zones is not very interesting because a very over

segmented partition is obtained. The extraction of the flat zones of

an image is generally accompanied with the use of a preliminary fil-

tering which increases the flat zones to reduce the over segmenta-

tion effect. This is the purpose of levelings, proposed by Meyer

(Meyer, 1998), which enlarges flat zones according to a marker

image. However, even with the use of levelings to simplify the

image, small variations still occur (this is even true with color

images) and Meyer (Meyer, 1998) has proposed to extend the prin-

ciple of flat zones to quasi flat zones.

Definition 5: The Quasi-Flat Zones (Meyer, 1998). Two

points p and q belong to the same quasi flat zone of an image I if

there is a connected path (p1, p2, . . ., pn) between those two points

so that p1 5 p and pn 5 q and for each i, kI(pi)2 I(pi11)k < b
k.k is a L2-norm and increasing values of b create a hierarchy of

partitions. Quasi flat zones are strict flat zones for a threshold crite-

rion equal to zero (b 5 0). Increasing values of b defines a hierar-

chy of partitions. The progression in the hierarchy levels is strongly

correlated with the number of regions and the loss of information. It

is therefore important to be careful on the determination of this

threshold criterion for obtaining a single efficient segmentation.

Figure 1 presents several segmentations produced by the quasi flat

zones principle for different hierarchy levels (be{1, 5, 10}) in two

color spaces (RGB, L*a*b*).

C. Nonparametric Hierarchical Watershed. The watershed

is a region growing algorithm which defines a pathwise connection.

The watershed lines associate a catchment basin to each minimum

of a function. Typically, the function to flood is a gradient function

which catches the transitions between the regions. Region seeds of

the watershed are therefore the gradient minima. Working with

color images, the definition of an appropriate color gradient is the

core part of the watershed. At this time, there is no consensus on

the way to obtain an appropriate color morphological gradient

whatever the color space. This limitation is due to the fact that there

is no natural total ordering of multivariate data (Barnett, 1976; Pitas

and Tsalides, 1991). To have a watershed whose definition remains

the same whatever the color space under consideration, a general

formulation of a color geometry is needed. In this article, we con-

sider the classical one which was originally proposed by Di Zenzo

(Dizenzo, 1986). Other ad hoc formulations usually used in mathe-

matical morphology (Angulo and Serra, 2003) can also be consid-

ered but they are color space dependent. That is why, the Di Zen-

zo’s gradient formulation might be preferred since it is now consid-

ered as the classical way to compute the gradient of a color image.

We will however also consider in the sequel the classical morpho-

logical gradients for comparison purposes (Angulo and Serra,

2003). The watershed is extensively used for the segmentation of

images but its major drawback relies on the production of over seg-

mented partitions mainly because of the presence of a high number

of significant gradient minima. As for flat zones, one can try to

overcome this problem by filtering the image, but this comes to

report the problem on an appropriate tuning of a given filtering

operation. Another solution to disguise these disadvantages consists

in using specific markers instead of gradient minima. Whatever the

technique used to overcome over segmentation, it introduces an

apriori information and therefore techniques of hierarchical seg-

mentation are of interest for the production of a nonparametric hier-

archical watershed also called waterfall. The waterfall algorithm

(Beucher, 1994; Angulo and Serra, 2003) enables to construct a

nonparametric hierarchy of watersheds (a hierarchy of partitions)

which performs region merging between adjacent catchment basins.
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It is based on an iterative process which computes the gradient on a

specific image called the mosaic image (obtained by associating its

color mean value to the catchment basins). By carrying out several

times this operation, we obtain a cascade of watersheds i.e., a hier-

archy of partitions.

Definition 6: Algorithm of the Nonparametric Hierarchical

Watershed (Beucher, 1994). Let m0 be a color image and g0 its

gradient (positive bounded function 0 � go(x) � M).

1. Let W(gi) be the watershed of gi,

2. Define a new function hi ¼
giðxÞ if x 2 WðgiÞ

M otherwise

�

3. gi is reconstructed by geodesic erosions from hi i.e., gi
*
5 egi

rec (hi)

4. Compute the watershed of gi* and the corresponding mosaic

mi. Let gi11 be the gradient of mi and iterate (i 5 i11).

Figure 2 presents several segmentations produced by the water-

fall algorithm for different levels of the hierarchy (be{1, 10, 20}) in

two color spaces (RGB, YCbCr) with the Di Zenzo gradient.

D. Nested Homogeneous Connections. Flat zones hierar-

chies are usually too fine and waterfall ones too coarse; thus, we

present a connective criterion which is an intermediate one between

pathwise connections (watersheds) and threshold connections (quasi

flat zones). This new criterion is referred to as homogeneous con-

nections and was introduced by Lezoray et al., (2005b; Meurie,

2005; Lezoray et al., 2006).

Definition 7: Homogeneous Connections (Lezoray et al.,

2006). Two points p and q belong to a same homogeneous zone of

an image I if

kI(p)2I(q)k � k 3 b(Seed(p)) with Seed(p) the initial seed of

the region of p with

bðpÞ ¼
1

nv

X

pv2VðpÞ

IðpÞ � IðpvÞk k

V(p) denotes the neighbors of p and nv the cardinal of this set,

k.k is a L2-norm and k is a real number which sets the fine-

ness of the partition. b(p) being close to a gradient computa-

tion, pixels in homogeneous regions (the color variation among

the considered neighborhood is small) will be considered first

as candidate region seeds. Each pixel is a candidate region

Figure 1. Hierarchies of partitions produced by the quasi flat zones principle at levels (ie. ß) 1, 5, 10. First line: initial image in RGB and L*a*b*,

second line: RGB quasi flat zones and their colorized images, third line: L*a*b* quasi flat zones and their colorized images. [Color figure can be

viewed in the online issue, which is available at www.interscience.wiley.com.]
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seed which grows by aggregating adjacent pixels according to

the previous rule. This implies that a pixel q is aggregated to

a region R if the distance between a pixel p of R, neighbor of

q, is k times lower than the initial homogeneity of the seed

pixel of R. k is the accepted homogeneity jump and states if

two pixels belong to the same region. Homogeneous zones

therefore produce partitions, the fineness whose decreases while

k increases (the homogeneity constraint is slackened). Obvi-

ously, a hierarchy of partitions obtained for increasing values

of k is not nested as it lowers the number of initial seeds

while slackening the homogeneity constraint. This is the same

problem as producing nested partitions with the watershed: one

has to consider the output of the ith level as an input for the

(i11)th level. Therefore, it is possible to produce hierarchical

partitions using homogeneous connections by applying the same

principle on the partition obtained at the previous level (an ef-

ficient implementation uses graphs). For that, we apply the

principle of homogeneous connections on a RAG obtained by a

fine partition of homogeneous connections. Each region of this

RAG being described by its average, one can apply the same

growth rule to the graph. We, therefore, obtain the principle of

nested homogeneous connections described below.

Definition 8: Nested Homogeneous Connections (Meurie,

2005). Two nodes p and q of a RAG G belong to same homogene-

ous zone of an image I if kI(Np)2I(Nq)k � k 3 b(Seed(Np)) with

Seed(Np) the seed node of the region of Np with

bðNpÞ ¼
1

nv

X

Npv
2VðNpÞ

IðNpÞ � IðNpv
Þ

�
�

�
�

I(Np) denotes the average color of the pixels corresponding to the

node Np, V(Np) the neighbors of Np and nv the cardinal of this set.

Each node Np of the graph is threaded in a hierarchical queue with

the value of b(Np) as priority. The algorithm for the construction of

nested homogeneous connections builds a hierarchy of partitions

and needs two parameters k and k0. k is a real number which sets the

fineness of the base partition and k0 the fineness of the next parti-

tions of the hierarchy. The adjustment of k and k0 has a real impor-

tance in the performance of the algorithm. The algorithm of this

method is described below. Homogeneous connections produce

hierarchical partitions which are finer than the waterfall and coarser

than the quasi flat zones. However, they are better suited in the case

of automatic segmentation since they do not need a definition of

Figure 2. Hierarchies of partitions produced by the nonparametric hierarchical watershed at levels 1, 10, 20. First line: initial image in RGB and

YCbCr, second line: RGB segmented images with theirs colorized (mosaic) images, third line: YCbCr segmented images with theirs colorized

(mosaic) images. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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seeds on a given gradient and they locally adapt their behavior to

the image content since the threshold which determines if a pixel

belongs to a region depends on the local homogeneity at this pixel.

Figure 3 provides an illustration of several hierarchical segmen-

tations produced by the nested homogeneous connections algorithm

for different levels of the hierarchy (be{1, 5, 15}) in two color

spaces (RGB, IHSL).

Let b be an integer, k and k0 a real and bend a maximum number

of iteration

1. b/ 1

2. Pb/ Homogeneous zones of k fineness of the initial image

3. Gb5(Nb, Ab) for an initial partition Pb
4. while (b�bend) do

5. |Gb11/ Homogeneous zones of k0 fineness of Gb
6. |b/ b11

7. end while

IV. Experimental Results. In this section, we present an experi-

mental study carried out on hundred images of the ‘‘Berkeley Seg-

mentation Dataset and Benchmark (BSDB).’’ Results are shown in

Figures 4–7. In Figures 4–6, the curves are obtained on the whole

database (one hundred images of the BSDB). For this experimental

study, the color space influence has been assessed on the above men-

tioned morphological hierarchical segmentation schemes: quasi flat

zones, nonparametric hierarchical watershed, and the nested homoge-

neous connections. To evaluate the achieved results, objective criteria

such as mean square error (MSE) has been considered. This objective

quality measure can be expressed by the following equation:

MSE ¼
1

NM

XN

i¼1

XM

j¼1

oi;j � xi;j

� �2
ð4Þ

where oi,j and xi,j respectively denote the original and reconstructed

samples.

First, we consider the influence of the parameters k and k0 on the

nested homogeneous connections. Results presented in Figure 4

show the evolution of the segmentation quality according to the

increase of k and k0. Several values of k are considered (ke{0.5, 1,

1.5}), we recall here that the value of k controls the fineness of the

finest partition (the base partition of the further produced irregular

pyramid). Therefore, for a given k, the segmentation quality

decreases with the increase of the parameter k. For these different

fineness levels of finest partition, all the corresponding nested ho-

mogeneous connections are extracted with k0 ranging from 0.5 to 5.

The MSE objective quality criteria is computed for each level of

Figure 3. Hierarchies of partitions produced by the nested homogeneous connections at levels 1, 5, 15. First line: initial image in RGB and

IHSL, second line: RGB segmented images with their colorized images, third line: IHSL segmented images with their colorized images. [Color

figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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the hierarchy to assess the difference between the different values

of the parameters. For this first experimentation, only the RGB color

space is considered. For the three tested values of k and for k0 upper

to three, a saturation of the MSE in the first levels is observed which

implies that the segmentation quality is poor and this finishes very

fast in the hierarchy. It is therefore preferable to use a lower value

of k0 to increase the number of levels of the hierarchy which pro-

vides then a better multiscale representation of the image. A value

of k0 lower or equal to two seems to be a good compromise. The

user can therefore choose the parameter k0 within this range accord-

ing to a compromise which can be visually or quantitatively

assessed as a compromise between fidelity to the initial data and

complexity of the involved model. Figure 5 presents several sali-

ency maps of different hierarchical partitions obtained by nested

homogeneous connections for k ranging between 0.5 and 2. The

purpose of this illustration is to visually show the above remark on

the level of the persistence of a pixel among the levels. A saliency

map shows the importance of each pixel all along the levels of a hi-

erarchy, the saliency of a pixel being defined as the highest level for

which it occurs at the boundary between two regions (in the sali-

ency map images, the gray level corresponds to the hierarchy level,

that is to say the highest of the brightest). Indeed, the second image

of Figure 5 (k0 5 0.5) has an important brightness since most of the

regions always remain present along the hierarchy levels even for

the highest. Such an hierarchical segmentation is therefore very

close to the original content of the image but this involves a lot of

levels to obtain interesting sole partitions of the image. On the op-

posite, there are much less regions in the last image (k0 5 4) which

assesses the fact that for high values of k0 very coarse hierarchical

segmentations are obtained but they still extract the main visual fea-

tures of the image. Usually, one would prefer to obtain a hierarchi-

cal segmentation which offers a good compromise between data

fidelity (close to the initial image) and model complexity (few lev-

els) as provided by the 3, 4, and 5th images of Figure 5. To fix this

compromise we chose k 5 0.5 and k0 5 1 for the next experiments

in this study. Once we have fixed the parameters of nested homoge-

neous connections, we consider the influence of color spaces on the

production of morphological hierarchical partitions.

To end up the experimental studies, we consider the color space

influence in terms of quantitative criteria. Figure 6 shows that, as

expected, MSE increases as one progresses in a given hierarchy of

partitions. This is inherent to the principle of hierarchical segmenta-

tion as progressing in the hierarchy means merging regions and

conducting to a coarse segmentation. In Figure 6 (top-right), we can

notice that the quasi flat zone scheme is very sensitive to the color

space and the quality of the segmentation can highly vary from one

color space to another. This is easy to explain. Quasi flat zones rep-

resents a threshold connection based on distances and both differ in

Figure 4. Evaluation with MSE of segmented images obtained by nested homogeneous connections with different parameters of k and k0.

The used parameters are k 5 0.5 (top-left), k 5 1 (top-right), and k 5 1.5 (bottom-left). [Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]
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Figure 5. Saliency maps of different hierarchical partitions obtained by nested homogeneous connections with k 5 1 and different k0 (from left

to right: initial image, saliency maps with k0 5 0.5, k0 5 1, k0 5 1.5, k0 5 2, k0 5 4). [Color figure can be viewed in the online issue, which is avail-

able at www.interscience.wiley.com.]

Figure 6. Evaluation with MSE of segmented images obtained by different methods of hierarchical segmentation in four color spaces (seg-

mentation obtained by nonparametric hierarchical watershed with DiZenzo gradient (top-left), with vectorial morphological gradient (middle-left),

with marginal morphological gradient (bottom-left), segmentation obtained by quasi flat zones [top-right), and nested homogeneous connections

(middle-right)]. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]



different color spaces. Quasi flat zones are therefore absolutely not

color space independent. It is also suitable to use the quasi flat zone

in a color space given by the following preference ranking:

IHSL>RGB>YCbCr>L*a*b*. On the opposite, as seen in Figure 6

(left), the color space has very little influence on the segmentation

produced by the nonparametric hierarchical watershed. This result

is not in compliance with previous results in the literature (Angulo,

2005) but we can explain it. In fact, the waterfall algorithm depends

on the computing of a single input: the color gradient. For instance,

in the reference works of Angulo, very few images are considered

and even if a lot of different color morphological gradients are

experimented (Angulo and Serra, 2003), their influence is only visu-

ally. And as one could expect it, they produce different results. To

have a real quantitative evaluation on a consequent set of images,

different gradients have been tested i.e., the general formulation of

Di Zenzo (Fig. 6: top-left), a vectorial (Fig. 6: middle-left) and a

marginal (Fig. 6: bottom-left) morphological gradients [see in

(Angulo and Serra, 2003) for their formulations]. The conclusion is

that the waterfall algorithm is quasi insensitive to the color space

for a given color gradient. Moreover, there is no significant

Figure 7. Initial and colorized images of partition hierarchies at levels 1 (column 1), 10 (column 2), 15 (column 3), 20 (column 4). The depicted

schemes are quasi flat zones (lines 1 and 2), nested homogeneous connections (lines 3 and 4) and nonparametric hierarchical watershed with

the DiZenzo (lines 5 and 6). Considered color spaces are RGB (lines 1, 3, 5) and IHSL color spaces (lines 2, 4, 6). [Color figure can be viewed in

the online issue, which is available at www.interscience.wiley.com.]
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difference between vectorial and marginal morphological gradients.

However, the produced hierarchies with the Di Zenzo gradient con-

tain a very huge number of levels and the produced models are not

compact at all in comparison with the results produced by morpho-

logical gradients. Nested homogeneous connections illustrated in

Figure 6 (middle-right) are a good intermediate connective criterion

between pathwise (watershed and waterfall) and threshold connec-

tions (quasi flat zones) as regards the quality of the segmentation

obtained (Meurie, 2005). As for the quasi flat zones, since a mea-

sure of distance is used, the color space has an influence. The later

being however less pronounced than with the quasi flat zones, as a

growing rule based on a measure of local homogeneity is used and

not only a threshold. To conclude on this method, it is suitable to

use the nested homogeneous connections in a color space given by

the following preference ranking: RGB>YCbCr> L*a*b*>IHSL.

Figures 7 and 8 present several colorized (i.e., mosaic) images

produced by the three hierarchical methods at different levels: 1

(column 1), 10 (column 2), 15 (column 3) and 20 (column 4). The

depicted schemes are quasi flat zones (lines 1 and 2), nested homo-

geneous connections (lines 3 and 4) and nonparametric hierarchical

Figure 8. Initial and colorized images of partition hierarchies at levels 1 (column 1), 10 (column 2), 15 (column 3), 20 (column 4). The depicted

schemes are quasi flat zones (lines 1 and 2), nested homogeneous connections (lines 3 and 4) and nonparametric hierarchical watershed with

the DiZenzo (lines 5 and 6). Considered color spaces are RGB (lines 1, 3, 5) and IHSL color spaces (lines 2, 4, 6). [Color figure can be viewed in

the online issue, which is available at www.interscience.wiley.com.]
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watershed with the Di Zenzo gradient (lines 5 and 6). The best color

spaces (i.e., RGB for nested homogeneous connections and IHSL for

quasi flat zones) are used to demonstrate the differences of the seg-

mentation results. The images of Figures 7 and 8 stress out our previ-

ous remarks. For a given low hierarchy level (i.e., 1: column 1), the

differences between the mosaic images produced by the hierarchical

methods in RGB (lines 1, 3, 5) and IHSL (lines 2, 4, 6) color spaces

is not really important. But that difference increases as one pro-

gresses in the hierarchy, expects, for the nonparametric hierarchical

watershed which is insensitive to the color space. The extraction of

these visual components being also different from one color space to

the other. That is why, it is important to be careful to the choice of

the color space for the quasi flat zones and the nested homogeneous

connections. As previously explained, if we consider the quasi flat

zones (lines 1 and 2), the best results are obtained in IHSL color

space (line 2). For example, in RGB color space (line 1), the tree and

the soil are merged with the sky (Fig. 7: columns 3 and 4) and the

surfboard are not well extracted (Fig. 8: columns 3 and 4). In con-

trast, to the nested homogeneous connections (lines 3 and 4), the best

results are obtained in RGB color space (line 3). The tree (Fig. 7: col-

umns 3 and 4) and the surfer (Fig. 8: columns 3 and 4) are better

extracted than in IHSL color space (line 4). These key examples per-

mit to illustrate the prefered rankings (IHSL>RGB>YCbCr>L*a*b*

for quasi flat zones and RGB>YCbCr>L*a*b*[IHSL for nested ho-

mogeneous connections) given earlier.

V. CONCLUSION

In this article, the color space influence on the production of parti-

tions hierarchies of color images has been studied and assessed.

The considered hierarchical partitions are morphological ones

which rely on the use of a connective criterion. A threshold connec-

tion for color images is the quasi flat zones. A pathwise connection

is the nonparametric hierarchical watershed (waterfall algorithm).

A connective criterion is nested homogeneous connections which

produces intermediate segmentations according to the two other

methods (and so which are finer than the waterfall and coarser than

the quasi flat zones). In terms of sensitivity to the different color

spaces, the results show that the different methods do not have the

same sensitivity. Quasi flat zones strongly react, nested homogene-

ous connections a little less and the nonparametric hierarchical

watershed even less. To conclude, we can define a preference rank-

ing of color spaces for two sensitive methods:

RGB>YCbCr>L*a*b*[IHSL for the nested homogeneous connec-

tions and IHSL>RGB>YCbCr>L*a*b* for the quasi flat zones.
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