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Abstract The process of segmenting images is one of the most critical ones in automatic
image analysis whose goal can be regarded as to find what objects are present in images.
Artificial neural networks have been well developed so far. First two generations of neural
networks have a lot of successful applications. Spiking neuron networks (SNNs) are often
referred to as the third generation of neural networks which have potential to solve prob-
lems related to biological stimuli. They derive their strength and interest from an accurate
modeling of synaptic interactions between neurons, taking into account the time of spike
emission. SNNs overcome the computational power of neural networks made of threshold or
sigmoidal units. Based on dynamic event-driven processing, they open up new horizons for
developing models with an exponential capacity of memorizing and a strong ability to fast
adaptation. Moreover, SNNs add a new dimension, the temporal axis, to the representation
capacity and the processing abilities of neural networks. In this paper, we present how SNN
can be applied with efficacy in image segmentation and edge detection. Results obtained
confirm the validity of the approach.
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1 Introduction

Image segmentation consists in subdividing an image into its constituent parts and extracting
these parts of interest. A large number of segmentation algorithms have been developed, and
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this number continually increases at a fast rate. The successful implementations of mod-
ern mathematical and physical techniques have considerably enhanced the accuracy of the
segmentation. Many effective algorithms have been proposed to perform the computer-aided
segmentation. These algorithms can be divided into different categories: algorithms based on
threshold [1], algorithms based on clustering [2,3], algorithms based on edge detection [4],
algorithms based on region extraction [5], algorithms based on pattern recognition techniques
[6] and algorithms based on deformable models [7].

Meanwhile, artificial neural networks are already becoming a fairly renowned technique
within computer science. Spiking neuron networks (SNNs) are often referred to as the third
generation of neural networks [8]. Highly inspired from natural computing in the brain and
recent advances in neuroscience, they derive their strength and interest from an accurate
modeling of synaptic interactions between neurons, taking into account the time of spike
firing. SNNs overcome the computational power of neural networks made of threshold or
sigmoidal units [9].

The use of spiking neurons promises high relevance for biological systems and, further-
more, might be more flexible for computer vision applications [10]. Wu et al. [11] proposed
hierarchical spiking neural networks to process visual stimuli, in which multiple overlapped
objects are represented by different orientation bars. Their model segments images and binds
their pixels to form shapes of objects using local excitatory lateral connections. Girau et
al. [12] had implemented integrate-and-fire neurons to the standard LEGION (local excit-
atory global inhibitory oscillator network) architecture to segment grey-level images. In
order to segment images, the LEGION model groups oscillators that receive their input
from similar features in an image. Oscillators group together by synchronization of their
phase thanks to excitatory connections, and they get desynchronized from other groups
of oscillators by means of global inhibition. Buhmann et al. [13] proposed a network of
leaky integrate-and-fire neurons to segment gray-scale images. The network architecture
with local competition between neurons that encode segment assignments of image blocks
is motivated by a histogram clustering approach to image segmentation. Rowcliffe et al.
[14] had developed an algorithm to produce self-organisation of a purely excitatory net-
work of Integrate-and-Fire neurons. Pixels from an image are used as scalar inputs for
the network, and segmented as the oscillating neurons are clustered into synchronised
groups.

In this paper, a spiking neural network clustering based approach is used to segment
images and detect edges with Hebbian based winner-take-all learning. We seek, through a
series of experiments carried out, the best parameters of the SNN network to have a good
segmentation and a fine detection of contours.

The paper is organized as follows: in Sect. 2, related works are presented within the lit-
erature of spiking neural network (SNNs). Section 3 is the central part of the paper and is
devoted to the description of the architecture of a spiking neural network with multiple delay
connections, the encoding mechanism for converting the real valued inputs into time vectors
and the learning rule. The results and discussions of the experimental activity are reported
in the Sect. 4. Section 5 concludes.

2 Background of SNNs

Spiking neural networks are a class of ANNs that are increasingly receiving the attention as
both a computationally powerful and biologically plausible mode of computation [15,16].
SNNs model the precise time of the spikes fired by a neuron, as opposed to the conventional
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neural networks which model only the average firing rate of the neurons. It is proved that
the neurons that convey information by individual spike times are computationally more
powerful than the neurons with sigmoidal activation functions [15].

2.1 SNNs Architecture

The network architecture consists in a feedforward network of spiking neurons with multiple
delayed synaptic terminals (Fig. 1a). The neurons in the network generate action potentials,
or spikes, when the internal neuron state variable, called “membrane potential”, crosses a
threshold ϑ . The relationship between input spikes and the internal state variable is described
by the spike response model (SRM), as introduced by Gerstner [16]. Depending on the choice
of suitable spike-response functions, one can adapt this model to reflect the dynamics of a
large variety of different spiking neurons.

Formally, a neuron j , having a set Γ j of immediate predecessors (“pre-synaptic neurons”),
receives a set of spikes with firing times ti , i ∈ Γ j . Any neuron generates at most one spike
during the simulation interval, and fires when the internal state variable reaches a threshold
ϑ . The dynamics of the internal state variable x j (t) are determined by the impinging spikes,
whose impact is described by the spike-response function ε(t) weighted by the synaptic
efficacy (“weight”) wi j :

x j (t) =
∑

i∈Γ j

wi jε(t − ti ) (1)

The spike-response function in (1) effectively models the unweighted post-synaptic potential
(PSP) of a single spike impinging on a neuron. The height of the PSP is modulated by the
synaptic weight wi j to obtain the effective post-synaptic potential.

In the network as introduced in [17], an individual connection consists in a fixed number of
m synaptic terminals, where each terminal serves as a sub-connection that is associated with
a different delay and weight (Fig. 1b). The delay dk of a synaptic terminal k is defined by the
difference between the firing time of the pre-synaptic neuron, and the time the post-synaptic
potential starts rising. We describe a pre-synaptic spike at a synaptic terminal k as a PSP of
standard height with delay dk . The unweighted contribution of a single synaptic terminal to
the state variable is then given by:

yk
i (t) = ε(t − ti − dk) (2)

with ε(t) a spike-response function shaping a PSP, with ε(t) = 0 for t < 0. The time ti is the
firing time of pre-synaptic neuron i , and dk the delay associated with the synaptic terminal k.

Extending (1) to include multiple synapses per connection and inserting (2), the state var-
iable x j of neuron j receiving input from all neurons i can then be described as the weighted
sum of the pre-synaptic contributions:

x j (t) =
∑

i∈Γ j

m∑

k=1

wk
i j yk

i (t) (3)

where wk
i j denotes the weight associated with synaptic terminal k. The firing time t j of neuron

j is determined as the first time when the state variable crosses the threshold ϑ : x j (t) ≥ ϑ .
Thus, the firing time t j is a non-linear function of the state variable x j : t j = t j (x j ).
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Fig. 1 a Spiking neural network architecture and b multiple synapses transmitting multiple spikes

2.2 Neural Coding Schemes

The first question that arises when dealing with spiking neurons is how neurons encode infor-
mation in their spike trains. Basically, there are three different coding methods: rate coding,
temporal coding and population coding (see [18] for reviews).

2.2.1 Rate Coding

Rate coding is a traditional coding scheme, assuming that most, if not all, information about
the stimulus is contained in the firing rate of the neuron. Because the sequence of action
potentials generated by a given stimulus varies from trial to trial, neuronal responses are
typically treated statistically or probabilistically. They may be characterized by firing rates,
rather than as specific spike sequences. Consequently, rate coding is inefficient but highly
robust with respect to the ISI ‘noise’ [19].

2.2.2 Temporal Coding

When precise spike timing or high-frequency firing-rate fluctuations are found to carry infor-
mation, the neural code is often identified as a temporal code [20]. A number of studies have
found that the temporal resolution of the neural code is on a millisecond time scale, indicating
that precise spike timing is a significant element in neural coding [21,22]. Temporal codes
employ those features of the spiking activity that cannot be described by the firing rate. The
temporal structure of a spike train or firing rate evoked by a stimulus is determined both
by the dynamics of the stimulus and by the nature of the neural encoding process. Stimuli
that change rapidly tend to generate precisely timed spikes and rapidly changing firing rates
no matter what neural coding strategy is being used. Temporal coding refers to temporal
precision in the response that does not arise solely from the dynamics of the stimulus, but
that nevertheless relates to properties of the stimulus. The interplay between stimulus and
encoding dynamics makes the identification of a temporal code difficult.
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2.2.3 Population Coding

Population coding is a method to represent stimuli by using the joint activities of a number
of neurons. In population coding, each neuron has a distribution of responses over some set
of inputs, and the responses of many neurons may be combined to determine some value
about the inputs. From the theoretical point of view, population coding is one of a few
mathematically well-formulated problems in neuroscience. It grasps the essential features
of neural coding and yet, is simple enough for theoretic analysis [21]. Experimental studies
have revealed that this coding paradigm is widely used in the sensor and motor areas of the
brain.

3 SNNs for Segmentation and Edge Detection Images

However, before building a SNN, we have to explore three important issues: information cod-
ing, learning method and network architecture. After that we will use the SNN to segment
images and detect edges.

3.1 Information Coding

Spike timing encoding is the process of transforming measurements of sensory inputs into a
spike train representation, which is the form of input a spiking neuron can handle. Thus the
multidimensional raw data, which consists of real values, needs to be mapped into a temporal
space before being fed to the network.

Bohte et al. [23], proposed the population coding method that encodes an input variable
using multiple overlapping Gaussian receptive fields (RF). Gaussian RF are used to generate
firing times from real values. The range of the data is first calculated, and then each input
feature is encoded with a population of neurons that cover the whole data range. For a range
[Imax ..Imin] of a variable, a set of m Gaussian RF neurons are used. The center Ci and the
width σi of each RF neuron i are determined by the following equations:

Ci = Imin +
(

2i − 3
2

) (
Imax − Imin

m − 2

)
(4)

σi = 1
γ

Imax − Imin

m − 2
(5)

where m is number of receptive fields in each population and a value of 1.5 is used for
the variable γ . In order to encode the input patterns temporally we can limit the value of the
input variables in a range [0, T] which is also called the coding interval. While converting the
activation values of RF into firing times, a threshold (th) has been imposed on the activation
value. A receptive field that gives an activation value less than this threshold will be marked
as not-firing and the corresponding input neuron will not contribute to the post-synaptic
potential.

An illustration of this encoding scheme is shown in Fig. 2, which shows the firing times
resulting from the encoding of the real value “0.3” using six RF. In this example, assuming
that the time unit is millisecond, the value 0.3 was encoded with six neurons by delaying the
firing of neurons 1 (5.564 ms), 2 (1.287 ms), 3 (0.250 ms), 4 (3.783 ms) and 5 (7.741 ms).
Neuron 6 does not fire at all, since the delay is above threshold 9 ms and stand in the no firing
zone.
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Fig. 2 Coding of a real value, and its corresponding firing time

3.2 SNNs for Unsupervised Learning Method

The approach presented here implements the Hebbian reinforcement learning method through
a winner-take-all algorithm [24,25]. For unsupervised learning, a winner-takes-all learning
rule modifies the weights between the input neurons and the neuron first to fire in the output
layer using a time-variant of Hebbian learning: if the start of a PSP at a synapse slightly
precedes a spike in the output neuron, the weight of this synapse is increased, as it had
significant influence on the spike-time via a relatively large contribution to the membrane
potential. Earlier and later synapses are decreased in weight, reflecting their lesser impact on
the output neuron’s spike time. The synaptic weighs should be randomly initialized. When
an input pattern is presented to the network, neurons are expected to fire. The first neuron to
fire is called the winner of the competitive process. Only the weights of the winner neuron
are updated using a Hebbian learning rule L(∆t).

In a clustering task, the learning process consists mainly of adapting the time delays, so
that each output neuron represents an RBF center. This goal is achieved using a learning
function (Fig. 3), which is defined as a function of the time interval ∆ti j between the firing
times ti and t j . This function controls the learning process by updating the weights based on
this time difference, as shown in (6), where ∆wi j is the amount by which the weights wi j
are increased or decreased and η is the learning rate.

∆wk
i j = ηL(∆ti j ) (6)

The learning function is a Gaussian curve defined by the (7). It reinforces the synapse
between neurons i and j if ∆ti j < ν, and depresses the synapse if ∆ti j > ν [26,27].
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Fig. 3 Gaussian learning function with b = 0.2, c = −2.3 and ν = 5

L(∆t) = (1 + b)e
(∆t−c)2
2(k−1) − b (7)

with

k = 1 − ν2

2ln b
1+b

where: L(.) is the learning function; η is the learning rate; ν determines the width of the
learning window; ∆t is the difference between the arriving of the spike and the fire of neuron
j ; b determines the negative update given to a neuron; c fix the peak of the learning function
and wk

i j is the increase of the kth connection between neurons i and j . The weights are limited
to the range 0 to wmax , the maximum value that a weight can take.

It is important to remark that this system is extremely sensible to the b parameter, since a
range from 0 to −0.3 leads to completely different dynamics in the learning process. When the
synaptic weight sum is stable (b = −0.007), the firing time tends to evolute only according
to the competitive learning process [28].

3.3 SNNs Architecture for Segmentation and Edge Detection Images

The model for a spiking neuron which we use in the following is the spike response model
with short term memory. Here we consider a network of such spiking architecture in a fully
connected feedforward with connections implemented as multiple delayed synaptic termi-
nals (Fig. 4). The network consists in an input layer, a hidden layer, and an output layer.
The first layer is composed of three inputs neurons (RGB values) of pixels. Each node in
the hidden layer has a localized activation Φn = Φ(‖X − Cn‖, σn) where Φn(.) is a radial
basis function (RBF) localized around Cn with the degree of localization parameterized by
σn . Choosing Φ(Z , σ ) = exp − (Z2/2σ 2) gives the Gaussian RBF. This layer transforms
real values to temporal values.

Instead of a single synapse, with its specific delay and weight, this synapse model consists
of many sub-synapses, each one with its own weight and delay dk , as shown in Fig. 1b. The
use of multiple synapses enables an adequate delay selection using the learning. For each
multiple synapse connecting neuron i to neuron j , with s sub-synapses, the resulting PSP
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Fig. 4 Network topology

is given by (1). The total contribution of all presynaptic neurons is then given by (3). The
neuron model implemented is the S RM0 [16], with a strictly excitatory PSP. The delays dk

are fixed for all sub-synapse k, varying from zero in 1 ms fixed intervals.
The spike-response function as used in our experiments is of the form:

ε(t) = t
τ

e1− t
τ for t > 0, else ε(t) = 0 (8)

modeling a simple α-function, and τ models the membrane potential decay time constant
that determines the rise and decay time of the PSP.

4 Experimental Results and Discussion

4.1 Image Segmentation

The proposed technique has been applied to an image from Berkeley database images [29].
We have chosen the image of church defined in pixel grid of 321 × 481 pixels (cf. Fig. 5)
and we have applied a lot of experiences to show the influence of number of sub-synapses,
the step of training and the parameters of learning c in the process of segmentation. In our
experiments, we set a continuous coding interval of 0–30 ms.

To show the influence of the number of sub-synapses on the number of areas of the seg-
mented image we had fixed the number of output neurons at 10, the number of receiving
fields to 10 for each value of intensity, the step of training η to 0.35, the choice of the base
of training is starting at random from 20% of the image source and we varied the number of
sub-synapses. Obtained images are shown in Fig. 6. MSE and PSNR evaluation according
to the number sub-synapses is shown in Fig. 7. The number of sub-synapses to use is a priori
10 and starting from a certain number of 15 sub-synapses, it is useless to add some.

To show the influence of the number of receptive fields on the number of classes of the
segmented image we had fixed the number of output neurons at 10, the number of sub-syn-
apses at 10, the step of training η to 0.35, the choice of the base of training is starting at
random from 20% of the image source and we varied numbers of receiving fields. Obtained
images are shown in Fig. 8. MSE and PSNR evaluation according to the number of receptive
fields is shown in Fig. 9.

To show the influence of the number of neurons at exit on the number of areas of the seg-
mented image, we had fixed the number of receiving fields to 10 for each value of intensity,
the number of sub-synapses at 10 between two neurons, the step of training η to 0.35, the
choice of the base of training is starting at random from 20% of the image source and we
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Fig. 5 Original image

Fig. 6 a Segmentation with 4 sub-synapses, b segmentation with 10 sub-synapses and c segmentation with
14 sub-synapses

Fig. 7 a MSE evaluation according to the number of sub-synapses and b PSNR evaluation according to the
number of sub-synapses
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Fig. 8 a Segmentation with five receptive fields, b segmentation with seven receptive fields and c segmen-
tation with ten receptive fields

Fig. 9 a MSE evaluation according to the number of receptive fields and b PSNR evaluation according to the
number of receptive fields

varied the number of classes at exit. Obtained images are shown in Fig. 10. The fidelity of
the image segmented from the original image increases with the number of classes.

To show the influence of the percentage of simple training on the number of classes of the
segmented image we had fixed the number of output neurons at 10, the number of receiving
fields is 10 for each value of intensity, the number of sub-synapses at 10, the step of train-
ing η to 0.35 and we varied the number of percentage of simple training. Obtained images
are shown in Fig. 11. As it can be seen, few representative pixels of the original image are
required to obtain good results.

To show the influence of the parameter of learning c we had fixed the number of output
neurons at 10, the number of receiving fields is 10 for each value of intensity, the number of
sub-synapses at 10, the step of training η to 0.35, the choice of the base of training is starting
at random from 20% of the image source and we varied the value of parameter of learning c.
Obtained images are shown in Fig. 12.

To compare the result of segmentation with others models, we had used the neural net-
work SOM and Kmeans. For segmentation with spiking neural network, we have fixe the
number of area at exit at 10, the number of receiving fields is 10 for each value of intensity,
the number of sub-synapses at 10, the step of training η to 0.35, the choice of the base of
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Fig. 10 a Segmentation with three classes, b segmentation with seven classes and c segmentation with ten
classes

Fig. 11 a Segmentation with 5% of the image source and b segmentation with 80% of the image source

Fig. 12 a Segmentation for parameter of learning c = −2.3, b segmentation for parameter of learning c = 0
and c segmentation for parameter of learning c = 2.3l

training is starting at random from 20% of the image source. The image obtained is shown in
Fig. 13c. The segmentation image with Kmeans is shown in Fig. 13a and with SOM neural
network is shown below in Fig. 13b.
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Fig. 13 a Image segmented with Kmeans, b image segmented with SOM and c image segmented with SNN

Table 1 Segmentation
evaluation

Segmentation Segmentation Segmentation
with Kmeans with SOM with SNN

PSNR 51.2831 62.5745 65.409

MSE 385.375 124.596 93.845

MAE 16.6438 7.96044 7.841

NCD 0.152178 0.110079 0.083

To see if segmentation is close to the original image, an error metric is needed. The error
between the original image and the quantized image is generally used. For this evaluation
we had used the peak signal noise ratio (PSNR), the mean square error (MSE), the mean
absolute error (MAE) and normalized color difference (NCD) are therefore considered to
evaluate the segmentation. Table 1 summarizes the evaluation obtained for each resulting
image in Fig. 13.

Based on the work in [30], several experiments are carried out by changing the num-
ber of synapses, the number of receptive fields and the size of training corpus to select the
best network parameters on a set of 50 images taken from the Berkeley database [29]. The
best architecture for a mean quadratic error of 87.352 ± [28.747, 39.319] has the following
parameters:

– Number of receptive fields = 8
– Number of subsynapses = 12
– Dynamic threshold ϑ started at 9
– Base of training = 20%
– Number of iteration = 3
– η = 0.35
– τ = 3
– ν = 5
– b = −0.007
– c = −2.3
– Coding interval = 20
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Fig. 14 Cell image

Fig. 15 Cell image segmented
with SNN

4.2 Edge Detection

In this experience, we have chosen an image of a microscopic cell [31] defined on a pixel
grid of 200 × 200 pixels (cf Fig. 14). To extract morphological features about nuclei from
microscopy cellular image, it is usually required to find the edges of nuclei at first. In cellu-
lar imaging, it is important to analyze nucleus morphology by tracking its boundary, shape
[32]. In this section, we focus on finding the boundary of nuclei by edge detection. Once the
boundaries of nuclei are found, more features can be extracted about the nuclei, such as their
form factor, convexity, compactness, and roundness.

First image of a microscopic cell is segmented with spiking neural network, we have fixed
the number of output neurons at 5, the step of training to 0.35, the choice of the base of
training is random starting from the image source of 5% and numbers of receiving fields is
8 for each neuron in input, and the number of sub-synapses at 12. The image result obtained
is shown in Fig. 15.

Once the segmentation done, we will record the activity of each output neuron which gives
for each input pixel an output binary 1 if the neuron is active or 0 if the neuron is inactive. The
result of binary matrices activation of output neurons can be represented by binary images
containing the edges detected by these neurons for each class (Fig. 16). Fusion is then made
to have the final edge by superimposing the resulting images.

The result of edge detection and a comparison with other methods of edge detection is
obtained in Fig. 17.
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Fig. 16 SNN edge network topology

Fig. 17 a Edge detection with Prewitt, b edge detection with morphology black top hat, c edge detection with
Canny and d edge detection with SNN

5 Conclusion

In this paper, we have applied a SNN model for image segmentation and edge detection.
To use a SSN for both these problems, we have addressed the issue of parameter selection.
We have focused our study on the key parameters: network architecture (number of sub-
synapses, receptive fields, output neurons) and learning parameters (training step, size of
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the training data base, peak of the learning function). These parameters are set up for each
specific image problems. Results have shown that a careful setting of parameters is required
to obtain efficient results. Future works will concern the application of this works to image
sequences.
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