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ABSTRACT
The extension of lattice based operators to manifolds is still
a challenging theme in mathematical morphology. In this pa-
per, we propose to explicitly construct complete lattices and
replace each element of a manifold by its rank suitable for
classical morphological processing. Manifold learning is con-
sidered as the basis for the construction of a complete lattice.
The whole processing of multivariate functions is expressed
on graphs to have a formalism that can be applied on images,
region adjacency graphs, and image databases. Several exam-
ples in microscopy do illustrate the benefits of the proposed
approach.

Index Terms— Multivariate, Mathematical Morphology,
Graphs.

1. INTRODUCTION

Mathematical Morphology (MM) is a nonlinear approach to
image processing that relies on a fundamental structure, the
complete lattice L [1]. A complete lattice is a nonempty set
equiped with an ordering relation, such that every non-empty
subset K of L has a lower bound ∧L and an upper bound
∨K. With the complete lattice theory, it is possible to define
morphological operators for any type of data once a proper
ordering is established [2]. Then morphological operators are
represented as mappings between complete lattices in com-
bination with matching patterns called structuring elements.
If Mathematical Morphology is well defined for binary and
gray scale images, there exist no general accepted extension
that permits to perform basic operations on multivariate data
since there is no natural ordering on vectors. Several orders
have been reported in literature but they are reduced to consid-
ering one specific type of images (color [3] or tensor images
[4]). As a consequence, if mathematical morphology has been
very popular for the segmentation of gray scale microscopy
images, this is not the case with multivariate images. In this
paper, we propose an approach to tackle this aspect. To this
aim, a graph-based formalism for the morphological process-
ing of multivariate images is presented.
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2. RANK TRANSFORM

A multivariate function is considered as a mapping f : Ω →
Rp where p is the dimensionality of the vectors. One way to
define an ordering relation between vectors is to use a trans-
form [5] h : Rp → Rq, with q $ p followed by a condi-
tional ordering on each dimension of Rq. Then, ∀(xi, xj) ∈
Rp × Rp, xi ≤ xj ⇔ h(xi) ≤ h(xj). From this, it is
easy to show the following equivalence (complete lattice on
Rp)⇔(bijective application h : Rp → Rq)⇔(rank transform
on Rp) [6]. This implies that, to induce a complete lattice,
the vectors’ values are not important but only their position
in the lattice: this corresponds to a rank transform defined by
the mapping h : Rp → N. Ordering comparisons involved in
morphological operations are performed directly on ranks and
one obtains a common framework valid for data of arbitrary
dimensions.

3. MATHEMATICAL MORPHOLOGY ON GRAPHS

A graph is a couple G = (V,E) where V is a finite set
of vertices and E is a set of edges included in a subset of
V × V . Two vertices are adjacent if the edge (u, v) ∈ E.
u ∼ v denotes the set of vertices u connected to the ver-
tex v via the edges (u, v) ∈ E. A graph is weighted if it is
associated with a weight function k : E → R+ satisfying
k(u, v) > 0 if (u, v) ∈ E, and k(u, v) = 0 if (u, v) /∈ E.
We now introduce several definitions. The neighborhood set
of vertices N (G, v) of a vertex v is defined as: N (G, v) =
{u ∈ V : (u, v) ∈ E} ∪ {v}. The set of edges A(G, v)
connecting any vertices in N (G, v) is defined as: A(G, v) =
{(u, w) ∈ E : u ∈ N (G, v), w ∈ N (G, v)}. A structur-
ing element S(G, v) at a given vertex v is a sub-graph of
G defined as: S(G, v) = (N (G, v),A(G, v)). With these
definitions, the erosion ε of a function f on a graph G at a
vertex v is defined by: ε(G, f, v) = {f(u) : h(f(u)) =
∧h(f(w)), w ∈ N (G, v)}. If we compare this definition
with the usual definition of an erosion, the structuring ele-
ment is directly expressed by the graph topology and the lat-
tice is defined by the use of the rank transform h. For the
case of images, this definition is equivalent to the classical al-
gebraic case. Indeed, for images, one considers grid graphs



(one vertex per pixel) and vertices are then connected accord-
ing to the chosen structuring element. However, our formu-
lation is more general since it can be applied on graphs of
the arbitrary topologies. Similar definitions can be found in
[7]. With this definition, the graph topology never changes,
but only vectors associated to vertices. We can reformulate
the erosion as a contracting erosion that modifies the graph
topology. To that aim, we define the erosion at a vertex v in
terms of vertex preservation: εV(G, f, v) = {u : h(f(u)) =
∧h(f(w)), w ∈ N (G, v)}. Then, one can define the vertex
erosion εV(G, f) and the edge erosion εE(G, f) of a graph
as: εV(G, f) = V ∩ {εV(G, f, v),∀v ∈ V } and εE(G, f) =
{(u, v) ∈ E, u ∈ εV(G, f), v ∈ εV(G, f)}. Finally a con-
tracting erosion εC(G, f) is an operation that produces a new
graph (εV(G, f), εE(G, f)) that is a sub-graph of G. Similar
definitions apply for dilation.

4. COMPLETE LATTICE LEARNING

In the previous definitions of Mathematical Morphology on
Graphs, the complete lattice is assumed to be known and
expressed by the rank transform h. However, the construc-
tion of such a rank transform is a difficult problem. To
perform this, we consider manifold learning methods that
enable to perform dimensionality reduction. This is equiv-
alent to a rank transform when the dimension of the pro-
jected is space is equal to one. Graph-based methods have
recently emerged as powerful tools for nonlinear dimen-
sionality reduction. Among the existing methods, we con-
sider Laplacian Eigenmaps [8]. Let {x1, x2, · · · , xn} ∈ Rp

be a set of n initial vectors. Manifold learning aims at
searching for a new representation {y1, y2, · · · , yn} with
yi ∈ Rn. From a neighborhood graph G built from the
initial data set, an adjacency matrix W is considered and
weighted by a Gaussian kernel Wij = e

(
− ||xi−xj ||2

σ2

)
. To

have a parameterless Gaussian kernel, σ is estimated by
σ = maxv∈V,u∼v ‖f(v) − f(u)‖. Then, one seeks to mini-
mize 1

2

∑
ij

Wij‖yi − yj‖2 = Tr(YT ∆Y) with ∆ = D − W

that represents the un-normalized Laplacian (D is the degree
matrix). The solution of the previous minimization problem
can be found by solving ∆y = λDy. The eigenvectors of this
equation corresponding to the smallest non zero eigenvalues
form the manifold representation. To perform a complete
lattice learning with manifold learning, a vertex is associ-
ated to each input vector data and a neighborhood graph is
constructed. Then, we consider only the first non-zero eigen-
vector of the obtained Manifold representation and re-arrange
the initial vectors increasingly according to their value in the
first non-zero eigenvector: this defines the rank transform.
Manifold learning, although being attractive, is a time con-
suming step for the complete lattice construction when the
amount of data is large: complexity is O(n3). To overcome
this, several strategies can be considered that rely on the same

idea: to reduce the size of the data on which the complete
lattice construction is performed. We propose two strategies
in the sequel.

4.1. Data Quantization

A first strategy can consist in reducing the input data size by
Vector Quantization (VQ). Given an initial data set of size n,
VQ: Rp → Rp is applied to construct a codebook C : N →
Rp and an encoder I : Rp → N. An index h : Ω → N can be
deduced from D and I by applying h(x) = I(f(x)) to each
vector f(x) = x of the original data set. The initial data set
can be reconstructed with loss from the index and the code-
book by C(h(x)): the obtained data set is an approximation
of the initial data set with only 2k elements. The codebook
being of reduced size, one can apply manifold learning on the
complete graph associated to the codebook. This enables to
construct the complete lattice (the ordering of the codebook)
and to define the rank transform (obtained with the function
h).

4.2. Local lattice learning

A second strategy can consist in performing locally the com-
plete lattice creation. The rank transform h is defined on sub-
graphs of the initial graph: the structuring elements S(G, v).
This comes to define the rank transform only on a reduced set
of vertices: N (G, v).The manifold learning is therefore ap-
plied on the data set {f(u), u ∈ N (G, v)}. With this strategy,
the complete lattice is not available for the whole manifold
but only one sub-manifold defined, for a local processing, by
S(G, v).

5. RESULTS

In this Section, we illustrate the two above-mentioned strate-
gies for complete lattice learning.

5.1. Vector Quantization with Manifold Learning

We illustrate the use of vector quantization with manifold
learning for morphological processing. Figure 1 illustrates
this principle on a color image (f : Z2 → R3) represented by
a (k2 − 1)-adjacency graph that means using a k × k square
structuring element. The image is quantized into 512 colors
and the obtained codebook is re-ordered by Manifold Learn-
ing to construct the complete lattice of the 512 colors. A rank
image is created by assigning to each pixel its rank on the
complete lattice of the codebook. Then, morphological oper-
ations are performed on the rank image and the final color im-
ages are obtained by reconstruction with the codebook defin-
ing the lattice. As it can be seen in Figure 1, the induced
morphological operations enable an accurate processing of
the image. To show that our formalism is easily applicable
to any multivariate image, Figure 2 presents a morphological



processing of a multispectral image (f : Z2 → R20) with a
1024 codebook. The segmentation of the image is performed
with a watershed on the morphological gradient of an Alter-
nate Sequential Filter of the rank image.

5.2. Local Manifold Learning

We illustrate the use of local manifold learning for morpho-
logical processing. First, we consider the morphological pro-
cessing of Region Adjacency Graphs (RAG). From a cyto-
logical microscopic image (Figure 3(a)), a partition is con-
structed (Figure 3(b)) by labeling connected components ob-
tained from a k-means clustering with k = 4. To the ob-
tained partition, a RAG can be associated where each vertex
represents a region and edges model adjacency relations be-
tween regions. To perform morphological operations on such
a graph, one needs to define the feature vectors associated to
vertices and the distance used to compare these features. We
have used here a Mahalanobis distance and f : V → R3×3

that represents the variance-covariance matrix associated to
each region. Several morphological contracting operations
are then applied successively: one erosion and two dilations
(Figures 3(c)-3(e)). Since these operations are contracting
ones, the number of vertices is reduced at each operation. Fig-
ure 3(f) presents the original image with boundaries of Figure
3(e) superimposed. Such processing on a RAG is a simple
alternative to region merging.

Finally, we consider the morphological processing of
image manifolds that represent high dimensional real-world
data. A database of cytological cellular images is used. This
database contains color images of cells of different sizes that
belong to 18 different classes. To each cell is associated a
region map that delineates its nuclear boundary. For visu-
alization purposes, we only consider the class of dystrophic
mesothelials (38 cells in this category). One problem with
such a database is that the images of cells have different
sizes. Therefore, we consider the 64-colors quantized color
histogram of each cell (only inside the nucleus) and we have
f : V → R64 that associates a color histogram to each vertex.
To model this image manifold, a k-nearest neighbor graph
is constructed (k = 7). The Earth Mover Distance (EMD)
[9] is used to compare histogram feature vectors. For this
image manifold, Morphological processing is applied: two
erosions and two contracting erosions (Figure 4). The two
erosions simplify the image manifold while maintaining its
size. Therefore, a same feature vector can be associated to
different vertices and simplification acts as a suppression of
outliers. When the two erosions are contracting morpho-
logical operations, the manifold size is decreased and few
representative images have been retained. To better under-
stand the behavior of such contracting erosions, the surviving
images of Figure 4(c) are shown with red borders on a graph-
ical representation of the graph associated to Figure 4 (this
projection is obtained with Laplacian Eigenmaps). One can

Original 512 colors Quantized
f : Z2 → R3 C ◦ h : Z2 → R3

Rank Image Complete Lattice of the codebook
h = I ◦ f : Z2 → N from top left to right down

with I : R3 → N C : N → R3

Erosion (5 × 5) Opening (5 × 5)

Erosion by reconstruction (5 × 5) Gradient (5 × 5)

Fig. 1. Processing examples with a rank image obtained from
Manifold Learning with Vector Quantization.



Channel 1 Channel 10 Rank Image

ASF (7 iterations MM gradient Watershed
with a square) (3 × 3 square)

Fig. 2. MM Processing example of a 20-channels multi-
spectral barley grain image.

(a) Original Image (b) Labeled partition (c) εC

(d) δC(εC) (e) δC(δC(εC)) (f) boundaries of (e)

Fig. 3. Morphological operations on the region adjacency
graph of a cytological image segmentation.

see that the surviving images correspond to the most represen-
tative elements of the manifold. The processing is interesting
for extracting relevant items of image data bases.

6. CONCLUSION

In this paper we presented a method that enables the use of
morphological operations on multivariate functions defined
on graphs. Morphological operators relying on a complete
lattice, the latter is dynamically constructed by manifold
learning with Laplacian Eigenmaps. To have a computation-
ally efficient solution, the manifold learning is performed
either locally or after data compression. Several examples
have illustrated the interest of such a family of operators
for the morphological multivariate processing of images and
databases in microscopy.

(a) Original cells (b) Two erosions

(c) Two contracting erosions (f) Graph of (a) with cells of (c) in red

Fig. 4. Morphological processing of cellular cytology image
data set.
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