
NONLOCAL AND MULTIVARIATE MATHEMATICAL MORPHOLOGY
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Université de Caen Basse-Normandie, GREYC - UMR CNRS 6072, Caen, FRANCE

ABSTRACT

The generalization of mathematical morphology to multivari-
ate images is addressed in this paper. The proposed approach
is fully unsupervised and consists in constructing a complete
lattice from an image as a rank transformation together with
a learned ordering of vectors. This unsupervised ordering of
vectors relies on three steps: dictionary learning, manifold
learning and out of sample extension. In addition to provid-
ing an efficient way to construct a vectorial ordering, nonlocal
configurations based on color patches can be easily handled
and provide much better results than with classical local mor-
phological approaches.

Index Terms— Mathematical morphology, nonlocal,
multivariate, manifold learning.

1. INTRODUCTION

Mathematical Morphology (MM) is a nonlinear approach to
image processing that relies on a fundamental structure, the
complete lattice (L,≤) [1]. The construction of morpholog-
ical operators therefore needs an ordering between the ele-
ments to be processed. Theoretically, a partial ordering is
sufficient to construct complete lattices. However, total order-
ings are preferred since they are vector preserving [2]. With
the acceptance of complete lattice theory, it is possible to de-
fine morphological operators for any type of multivariate im-
age data once a proper ordering is established [2]. However,
if MM is well defined for binary and gray scale images, there
exist no general admitted extension that permits to perform
morphological operations on multivariate data since there is
no natural ordering on vectors. Therefore, the extension of
Mathematical Morphology to multivariate images is a very
active field. Many different approaches have been proposed
in literature for color and hyperspectral images [2, 3, 4]. This
paper introduces a systematic approach towards the construc-
tion of complete lattices for any kind of multivariate data.
Following recent approaches [3, 4], we propose to use un-
supervised manifold learning to construct complete lattices
on multivariate data by considering the theoretical framework
of h-orderings [5]. We also consider the case of associating
patches vectors to pixels and show how our proposal can be
naturally used to obtain a innovative nonlocal formulation of
morphological operators.

2. COMPLETE LATTICES IN RP

A complete lattice L is a non-empty set equipped with a (par-
tial or total) ordering relation, such that every non-empty sub-
set P of L has a lower bound ∧P and an upper bound ∨P .
In this context, images are modeled by functions mapping
their domain space Ω, into a complete lattice L. Within this
model, morphological operators are represented as mappings
between complete lattices in combination with matching pat-
terns called structuring elements that are subsets of Ω.

In the sequel, we consider the general case of multivari-
ate images. A multivariate image can be represented by the
mapping f : Ω ⊂ Zl → T ⊂ Rp where l is the image dimen-
sion, p the number of channels, and T is a non-empty set.
One way to define an ordering relation between vectors of T
is to use the framework of h-orderings [5]. This corresponds
to defining a surjective transform h from T to L where L is a
complete lattice equipped with the conditional total ordering
[5]. With h : T → L and x → h(x), ∀(xi, xj) ∈ T × T ,
xi ≤h xj ⇔ h(xi) ≤ h(xj). Then, T is no longer required
to be a complete lattice, since the ordering of L can be in-
duced upon T by means of h [2]. When h is bijective, this
corresponds to define a space filling curve that goes through
each point of the set T just once and thus induces a total or-
dering. Therefore, there is an equivalence: (total ordering on
T )⇔(bijective application h : T → L)⇔(space filling curve
in T ) [2]. Moreover, we previously shown that another equiv-
alence can be considered [4]: (total ordering on T )⇔(rank
transformation on T ). Indeed, since a total h-ordering ≤h or-
ders all the vectors of the set T , it is possible to sort all these
vectors and obtain their rank in the ordering, creating explic-
itly the complete lattice (T ,≤h) [4]. Once the complete lat-
tice is created, each element of the multivariate image can be
replaced by its rank, creating a rank image. This (scalar) rank
image is the lattice representation of the multivalued image
according to the ordering strategy ≤h.

3. COMPLETE LATTICE LEARNING

Usual approaches to mathematical morphology do not explic-
itly construct the complete lattice: they first define a total
ordering relation (usually a specific lexicographic ordering)
that induces a complete lattice. In this paper, we take an op-
posite approach and we explicitly learn the complete lattice



from a multivariate image f : Ω → Rp using h-ordering
h : Rp → L. It is obvious that h cannot be linear since a dis-
tortion of the space topology is inevitable. As a consequence,
we choose to focus our developments on manifold learning
to construct h. Obviously, constructing the complete lattice
of an image with manifold learning directly from all the pix-
els is computationally unfeasible. Therefore, we propose a
three-step strategy towards construct the h-ordering.

3.1. Data Quantization

Since the complexity of manifold learning is highly depen-
dent on the number of input data, we first reduce the amount
of data of a multivariate image by Vector Quantization (VQ).
VQ maps a vector x to another vector x� that belongs to n

prototype vectors the set of which is named a dictionary. A
dictionary D is built from a training set I of size m (m � n).
A VQ algorithm has to produce a set D of prototypes x� that

minimizes the distortion defined by 1
m

m�
i=1

min
1≤j≤n

�xi − x�
j�2.

LBG [6] is one algorithm that can build such a dictionary. It
is an iterative algorithm that produces n = 2k prototypes af-
ter k iterates. Given a multivariate image of m pixels, VQ
is applied to construct a dictionary D = {x�1, . . . , x�n} where
x�i ∈ Rp.

3.2. Manifold learning

Once the dictionary D is obtained, we construct the transfor-
mation h on D with manifold learning. Manifold learning is
the counterpart to Principal Component Analysis which aims
at finding a low dimensional parametrization for data sets that
lie on nonlinear manifolds in a high-dimensional space. In
the last few years, many manifold learning algorithms have
been proposed that share the use of an eigen-decomposition
for obtaining a lower-dimensional embedding of the data. In
this paper, we choose to use Laplacian Eigenmaps [7]. Let
{x�

1, · · · , x�n} with x�i ∈ Rp be the n vectors of the dictionary
D. Manifold learning consists in searching for a new repre-
sentation {y1, · · · , yn} with yi ∈ Rn. One starts by comput-
ing a similarity matrix W that contains the pairwise similar-
ities between all the input vectors x�i: Wij = k(x�

i, x�j) =

e

�
− ||x�i−x�j ||

2

σ2

�
. To have a parameter free algorithm, σ is

set to the maximum distance between the vectors of the dic-
tionary. The degree diagonal matrix is denoted by D with
Dii =

�
j Wij , L = D − W is the Laplacian matrix and L̃

is the normalized Laplacian defined by L̃ = D
− 1

2LD
− 1

2 =
I − D

− 1
2WD

− 1
2 . Laplacian Eigenmaps manifold learning

consists in searching for a new representation obtained by
minimizing 1

2

�
ij

��yi − yj
��
2
Wij = Tr(YT

L̃Y) with Y =

[y1, · · · , yn]. This cost function encourages nearby sample
vectors to be mapped to nearby outputs. This is achieved by
finding the eigenvectors y1 = φ1, · · · , yn = φn of matrix

L̃. A low-dimensional representation is obtained by consider-
ing the q lowest eigenvectors (the first eigenvector being dis-
carded) with q � p and is defined by the following operator
hD : x�

i → (φ2(x�i), · · · ,φq(x�i))T where φk(x�
i) is the i

th co-
ordinate of eigenvector φk. This obtained projection operator
corresponds to constructing a h-ordering.

3.3. Out of sample extension

To dispose of a complete lattice, we have to define the projec-
tion h on all the vectors of the image and not only its dictio-
nary with hD. The dictionary D being a sub-manifold of the
complete lattice, we need to extend eigenfunctions computed
on the dictionary to new unexplored vectors from the origi-
nal image. This can be achieved by the Nyström method that
interpolates the value of eigenvectors computed on n sample
vectors x�i to m novel vectors xi. To extrapolate a new vector
x, the Nyström estimator with n samples for the k-th eigen-
vector is

φk(xj) =
1

λk

n�

i=1

φk(x�i)k(xj , x�i) (1)

where λk is the k-th eigenvalue of the normalized Laplacian
L̃ and φk(x�i) is the i-th element of the k-th eigenvector of
L̃. Let us instantiate Equation (1) in the context of the nor-
malized Laplacian. First, note that if λk is an eigenvalue of
of L, then 1 − λk is an eigenvalue of D− 1

2WD
− 1

2 . Apply-
ing the Nyström extension to compute the eigenvectors of the
normalized Laplacian L̃φk = λkφk, we get

φk(xj) =
1

1− λk

n�

i=1

k(xj , x�
i)�

d(xj)d(x�
i)

(2)

where d(x) =
n�

i=1
k(x, x�

i). With this formulation, we are

now in position to compute the projection h for any pixel of
the image.

3.4. Complete lattice construction

With these three sequential ingredients, we can now con-
struct a rank transformation that expresses explicitly the
complete lattice of the vectors of a multivariate image.
Given a multivariate image f : Ω → Rp that provides a
set I = {x1, · · · , xm} of m vectors in Rp, a dictionary
D = {x�

1, · · · , x�n} of n vectors in Rp is computed. Manifold
learning is performed on the dictionary and a new repre-
sentation hD is obtained for each element of the dictionary.
This new representation is interpolated to all the pixels of
the image with the Nyström out of sample extension, defin-
ing h : Rp → Rq as h(x) = (φ2(x), · · · ,φq(x))T . Once
this representation is obtained, the complete lattice (Rp,≤h)
can be explicitly constructed as well as the rank transfor-
mation. First, we sort all vectors of f according to ≤h

(the conditional total ordering on h(x)) and obtain a sorted



image fs. This sorted image fs : [0,m] → Rp defines
the ordering of the vectors of f . From this ordering, we
can deduce the rank of a vector on the complete lattice L
defined as r : Rq → [0,m], and construct a rank image
as fr : Ω → [0,m] with fr(pi) = (r ◦ h ◦ f)(pi) and
pi ∈ Ω. With these elements, the original image is now
represented by the rank image fr and the ordering of the
pixels’ vectors fs. The original image is recovered exactly
since f(pi) = (fs ◦ fr)(pi). Given a specific morphological
processing g, the corresponding processed multivariate image
is obtained by g(f(pi)) = (fs ◦ g ◦ fr)(pi).
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Fig. 1. Illustration of the proposed approach. First part, from
left to right: the standard Barbara image f , the dictionary
D (n = 256), the manifold hD learned from the dictionary,
the manifold h interpolated to all the image vectors. Second
part: the rank image fr and the sorted vectors fs in local and
nonlocal configurations

4. APPLICATION TO LOCAL AND NONLOCAL
MORPHOLOGICAL PROCESSING

The approach we propose is easily applicable to any kind of
multivariate images even if we only provide illustrations with
colors images. Figure 1 illustrates the proposed approach.
The image is first quantized into n = 256 colors and man-
ifold learning is performed on this dictionary D to obtain a
new representation hD. The latter is extended to all the origi-
nal colors of f to construct the global manifold learning rep-
resentation h. From this, the rank image fr and the sorted
set of vectors fs are obtained. The rank image is a grayscale
image of m levels that can be directly used for any classical
morphological processing.

Recently, nonlocal schemes for image processing have re-
ceived a lot of attention [8]. Rather than considering only the

vector associated to one pixel to compute pixel similarities,
patches around these pixels are considered. These patches
capture the dependencies of neighboring pixels and thus can
distinguish textural patterns. In previous works [9], we ex-
tended PDEs-based morphology to nonlocal processing on
images represented by proximity graphs. On the roots of our
works, [10] proposed some nonlocal pseudo-morphological
operators that make use of a nearest neighbors graph. If in-
novative, none of these works enables to extend the classical
flat algebraic morphological operators to nonlocal patch con-
figurations. On the opposite, our approach directly enables
it.

Given a color image f : Ω → R3, a patch of size w
2

represented as a vector of size 3w2 is associated to each pixel
giving the image f

� : Ω → R3w2
. On this image, the com-

plete lattice creation is performed. This enables to construct
the rank image according to the Manifold where patche lives
which is highly nonlinear. Moreover, since the complete lat-
tice is constructed according to patch similarities and not sin-
gle pixel colors, the textured parts of the image are better cap-
tured and the complete lattice has a much better h-ordering.
Once the rank image fr is obtained, this gives a nonlocal (but
scalar) representation of the image that can be used for mor-
phological processing. Finally, to be able to exactly recon-
struct the original image f , the image of sorted vectors fs

stores the color vectors and not the pixel patches.

Figure 1 also illustrates the nonlocal proposed approach.
The image f

� is quantized into n = 256 patches and a new
representation hD is obtained by manifold learning. The lat-
ter is then extended to the whole set of pixel patches. As it can
be seen, the ordering of the colors vectors fs is very different
between local and nonlocal configurations. The rank image
is smoother and much more homogeneous in regions of sim-
ilar texture assessing the interest in the use of color patches
information instead of color.

Figure 2 illustrates the interest of the proposed approach
on two textured images. First part of figure 2 presents the
obtained rank images fr in local (color vectors) or nonlocal
(color patches) configurations. Pixels described by similar
(color or patch) vectors have close ranks. However, the nonlo-
cal rank image better exhibit similar textures and is much less
sensitive to small variations. Second and third parts of figure
2 present morphological operator results. As it can be seen
on figure 2, the benefit of nonlocal configurations is evident.
For basic morphological operations such as erosion, dilation
and closing, nonlocal configurations enable to better preserve
textured parts of the image while simplifying it. With mor-
phological gradient and white top hat, the advantage is really
put forward and the nonlocal approach enables to better ex-
hibit salient edges in the original image. Asa consequence,
this permits to obtain better watershed segmentation results.



5. CONCLUSION

This paper introduces an unsupervised approach towards
the construction of complete lattices for multivariate images
and consequently a framework for unsupervised multivariate
mathematical morphology. In contrast to usual approaches,
no prior information (e.g., component prioritization) is re-
quired. The approach relies on dictionary learning, manifold
learning and out of sample extension. In addition to providing
a general approach to multivariate mathematical morphology,
we also introduce novel nonlocal flat algebraic mathemati-
cal morphology operators that have never been investigated
before.
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Fig. 2. Morphological processing of a color image in local or
nonlocal configurations. The dictionary size is 32, the struc-
turing element is a circle of radius 5, patches are 9 × 9. See
text for details.


