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Abstract
Mathematical morphology (MM) operators can be defined
in terms of algebraic sets or as partial differential equa-
tions. In this paper, we introduce a novel formulation of
MM over weighted graphs of arbitrary topology. The pro-
posed framework recovers local algebraic and PDEs-based
formulations of MM and introduces nonlocal configura-
tions. This enables to PDEs-based methods to process any
discrete data that can be described by a graph such as high
dimensional data defined on irregular domains.

Index Terms— Nonlocal, graphs, morphology.

1 Introduction
Two formulations of morphological operators can be found
in literature: the algebraic formulation and the Partial Dif-
ferential Equations (PDEs) formulation. Morphological al-
gebraic flat dilation δ and erosion ε of a function f0:Rn→R
are usually formulated by: δB(f0)(x) = sup{f0(x+y) :
y∈B} and εB(f0)(x) = inf{f0(x+y) : y∈B} with B
a compact convex symmetric set (called structuring ele-
ment). By using structuring sets B={x : ‖x‖p≤1}, the
general PDEs generating these flat dilations and erosions
[2] are as follows:

∂δ(f)

∂t
=∂tf=+‖∇f‖p and

∂ε(f)

∂t
=∂tf=−‖∇f‖p (1)

where f is a modified version of f0, ∇ is the gradient
operator, ‖.‖p corresponds to the Lp-norm, and one has
the initial condition ∂t=0f=f0. With different values of p,
one obtains different structuring elements: a rhombus for
p=∞, a disc with p=2 and a square with p=1 [2].

Whatever the chosen formulation (algebraic or PDEs),
there is actually no satisfying formulation of MM for the
processing of multivariate unorganized data. The algebraic
formulation has drawbacks for multivariate data (no natu-
ral ordering for vectors to form a complete lattice [1]) and
the PDEs formulation has drawbacks for unorganized data
(spatial discretization is difficult). In addition, whatever
the formulation, both only consider local interactions on
the data while nonlocal schemes have recently received a
lot of attention for arbitrary data processing [3, 4]. In the
spirit of [4], we propose to consider a discrete version of
continuous MM over weighted graphs that naturally en-
ables nonlocal processing of any multivariate data living
on any domain.

2 Operators on graphs
We consider the general situation where any discrete do-
main can be viewed as a weighted graph. Let G=(V,E, w)
be a weighted graph composed of a finite set of vertices
V and a finite set of weighted edges E⊆V×V . An edge
(u, v)∈E connects two adjacent or neighbor vertices u and
v of V . The set of neighbors of a vertex u is denoted by
N(u)={v∈V \{u} : (u, v)∈E}. The graph can be asso-
ciated with a weight function w:E→R+. Graphs are as-
sumed to be simple, connected and undirected, implying
that the weight function w is symmetric. For the sake of
simplicity, w(u, v) will be denoted by wuv and notation
v∼u will mean that vertices u and v are adjacent. Let
f :V→R be a discrete real-valued function that assigns a
real value f(u) to each vertex u∈V . Moreover, each vertex
u∈V can be assigned with a feature vector F (f0, u)∈Rm

that is used to compute weights:

g1(u, v)= exp(−‖(f0, u)− F (f0, v)‖2/σ2) with σ>0 ,

g2(u, v)=(‖F (f0, u)− F (f0, v)‖+ ε)−1 with ε>0, ε→0 .

A typical feature vector is F (f0, u)=f0(u) (local process-
ing) or F (f0, u) = Fτ (f0, u) = {f0(v) : v∈Nτ (u) ∪
{u}} with Nτ (u) = {v∈V \{u} : ‖u − v‖≤τ} (nonlocal
processing). We denote A as the set of connected vertices
withA⊂V such that for all u∈A, there exists a vertex v∈A
with (u, v)∈E. We denote by ∂+A and ∂−A, the external
and internal boundary sets of A, respectively. For a given
vertex u∈V :

∂+A = {u∈Ac : ∃v∈A with (u, v)∈E} and

∂−A = {u∈A : ∃v∈Ac with (u, v)∈E} ,
(2)

where Ac=V \ A is the complement of A.

2.1 Weighted morphological differences
All the basic operators considered in this paper are de-
fined from the difference operator or the discrete deriva-
tive. In this work, we consider a definition that allows
the expressions of discrete weighted gradient on graphs.
The weighted difference operator [4] dw:H(V )→H(E) of
a function f∈H(V ) is the vector of all weighted discrete
derivatives:

dwf =
`
(dwf)(u, v)

´
(u,v)∈E

where for all (u, v)∈E ,

(dwf)(u, v)=w1/2
uv

`
f(v)−f(u)

´
,

and ∂vf(u) = (dwf)(u, v) is the discrete partial deriva-
tive of f . This definition has the following properties for a



function defined in a Euclidean space: ∂vf(u)=−∂uf(v),
∂uf(u)=0 and if f(u) = f(v) then ∂vf(u)=0. Based on
the difference operator, we define two new weighted mor-
phological directional difference operators. The weighted
morphological external and internal difference operator are
respectively:

(d+
wf)(u, v)=w1/2

uv

`
max

`
f(u), f(v)

´
−f(u)

´
and

(d−wf)(u, v)=w1/2
uv

`
f(u)−min

`
f(u), f(v)

´´
,

(3)

with the following properties: (d−wf)(u, v)=(d+
wf)(v, u)

(d+
wf)(u, v)= max

`
0, (dwf)(u, v)

´
,

(d−wf)(u, v)=−min
`
0, (dwf)(u, v)

´
.

since one has max(a, b) − a = max(0, a − b), a − min(a, b) =

−min(0, b−a), and max(0, a−b) = −min(0, b−a). The two pro-
posed weighted morphological directional difference oper-
ators (3) recover classical directional difference operators
on unweighted graphs (w=1) and extend them to weighted
graphs that enables more adaptation in the difference com-
putation. Finally, the corresponding external and inter-
nal partial derivatives are: ∂+

v f(u)=(d+
wf)(u, v) and ∂−v f(u) =

(d−wf)(u, v).

2.2 Weighted morphological gradients
The weighted gradient of a function f∈H(V ) at vertex u
is the vector of all edge directional derivatives (∇wf)(u) =
`
∂vf(u)

´
(u,v)∈E

. Following this definition, we introduce two
new weighted morphological (internal and external) gra-
dients based on the internal and external partial derivatives
such as

(∇+
wf)(u)=

`
∂+

v f(u)
´
(u,v)∈E

and

(∇−wf)(u)=
`
∂−v f(u)

´
(u,v)∈E

.
(4)

The external gradient of a function is a directional dif-
ference operator defined as the difference between an ex-
tensive operator and the function (a typical one being the
max). Similarly, the internal gradient uses an anti-extensive
(the min) operator [6]. In the sequel, we use the Lp-norm
of gradients (4) for a given vertex u∈V , we have

‖(∇+
wf)(u)‖p =

h X

v∼u

wp/2
uv

˛̨
max

`
0, f(v)−f(u)

´˛̨p
i1/p

and

‖(∇−wf)(u)‖p =
h X

v∼u

wp/2
uv

˛̨
min

`
0, f(v)−f(u)

´˛̨p
i1/p

;

(5)

and for the L∞-norm, we have

‖(∇+
wf)(u)‖∞ = max

v∼u

“
w1/2

uv

˛̨
max

`
0, f(v)−f(u)

´˛̨”
and

‖(∇−wf)(u)‖∞ = max
v∼u

“
w1/2

uv

˛̨
min

`
0, f(v)−f(u)

´˛̨”
.

(6)

Same expressions can be obtained for the general weighted
gradient. One can note that general definitions presented
in this Section are defined on graphs of arbitrary topology.
Hence, they can be used to process any discrete regular or
irregular data sets that can be represented by a weighted
graph. Moreover, local and nonlocal settings are directly
handled in these definitions and both are expressed by the
graph topology in terms of neighborhood connectivity [4].

2.3 Relations with algebraic morphology
The previously defined external and internal gradients op-
erate on any graph structure. In the sequel, we show that
in the particular case of an unweighted (w=1) graph and
with p=∞, our gradient formulations recover algebraic
morphological operators where the structuring element is
provided by the graph neighborhood i.e. B=N(u) for all
u∈V . The L∞-norms (6) of the proposed external and in-
ternal gradients∇+

w and∇−w recover the classical definition
of algebraic morphological external and internal gradients.
Indeed, for the external gradient

‖(∇+
wf)(u)‖∞ = max

v∼u

`
max

`
0, f(v)−f(u)

´´

= max
v∼u

`
f(u), f(v)

´
−f(u) =δ(f)(u)−f(u) ,

and similarly for the internal one. With these latter rela-
tions, we immediately recover the algebraic classical mor-
phological gradient and Laplace operators:

‖(∇+
wf)(u)‖∞+‖(∇−wf)(u)‖∞=δ(f)(u)−ε(f)(u) and

‖(∇+
wf)(u)‖∞−‖(∇−wf)(u)‖∞=δ(f)(u)+ε(f)(u)−2f(u) .

Finally, our formulation recovers classical morphological
gradient and Laplace operators and extend them to weighted
graphs that define new families of local and nonlocal weighted
morphological gradients and Laplace operators.

2.4 Relations with graph boundary
Intuitively from definitions (2), dilation over A can be in-
terpreted as a growth process that adds vertices from ∂+A
to A. By duality, erosion over A can be interpreted as a
contraction process that removes vertices from ∂−A. The
decomposition of f into its level sets is denoted f l=χ(f−l)
where χ is the Heaviside function (a step function). Then,
one can prove [8] that for any level set f l, at vertex u∈V ,
the Lp-norm of the gradient (∇wf l)(u) can be decom-
posed as

‖(∇wf l)(u)‖p
p=‖(∇+

wf l)(u)‖p
p+‖(∇−wf l)(u)‖p

p .

Moreover, we can also deduce that

‖(∇wf l)(u)‖p=

(
‖(∇+

wf l)(u)‖p if u ∈ ∂+Al,

‖(∇−wf l)(u)‖p if u ∈ ∂−Al.

3 Non local graph morphology
Starting from PDEs-based dilation and erosion formula-
tions (1), we define the discrete analogue of such defi-
nitions and obtain the following expressions over graphs.
For a given initial function f0∈H(V ): ∂δ(f)(u)

∂t = ∂tf(u) =

+‖(∇+
wf)(u)‖p and ∂ε(f)(u)

∂t = ∂tf(u) = −‖(∇−wf)(u)‖p ∀u∈V ,
with the initial condition ∂t=0f=f0 (f is a modified ver-
sion of f0) and∇+

w and∇−w are the weighted discrete mor-
phological gradients defined in (4).



3.1 Dilation and erosion processes
As for the continuous case, a simple variational definition
of dilation applied to f l can be interpreted as maximizing a
surface gain proportional to the gradient norm +‖∇wf l‖p.
Similarly, erosion can be viewed as minimizing a surface
gain proportional to −‖∇wf l‖p. Dilation of f l on Al cor-
responds to only consider the external boundary set ∂+Al

and can be expressed by ∂tf
l(u)=+‖(∇+

wf l)(u)‖p where the
gradient ‖(∇wf l)(u)‖p is reduced to the external gradient
‖(∇+

wf l)(u)‖p. Similarly, erosion of f l on Al can be defined
by ∂tf

l(u)=−‖(∇−wf l)(u)‖p. Finally, by extending these two
processes for all the levels of f , we can naturally con-
sider the following two families of dilation and erosion.
These two processes are parameterized by p and w over
any weighted graph G = (V,E,w): δ(f)(u) = ∂tf(u) =

+‖(∇+
wf)(u)‖p and ε(f)(u) = ∂tf(u) = −‖(∇−wf)(u)‖p. To solve

these latter dilation and erosion processes, on the contrary
to the PDEs case, no spatial discretization is needed thanks
to derivatives that are directly expressed in a discrete form.
Then, by using discretization in time, and with the usual
notation f(u, n) ≈ f(u, n∆t), the general iterative schemes
for dilation and erosion, can be defined at time n+1, for all
u ∈ V , as

fn+1(u)=fn(u)+∆t‖(∇+
wf)n(u)‖p and (7)

fn+1(u)=fn(u)−∆t‖(∇−wf)n(u)‖p . (8)

The initial condition is f (0)=f0 where f0∈H(V ) is the
initial function defined on the graph vertices. If dilation is
considered and with the corresponding gradient norms, (7)
becomes for 0<p<+∞

fn+1(u)
(5)
= fn(u)+∆t

(X

v∼u

wp/2
uv

∣∣max
(
0, βn

uv

)∣∣p
) 1

p
(9)

and for p=∞

fn+1(u)
(6)
= fn(u)+∆t max

v∼u

(
w1/2

uv

∣∣max
(
0, βn

uv

)∣∣
)

, (10)

where βn
uv=fn(v)−fn(u). At each step of the algorithms,

the new value at vertex u only depends on its value at
step n and the existing values in its neighborhood. The
proposed dilation and erosion formulations operate on any
graph structures. It can be shown that with an adapted
graph topology and an appropriated weight function, the
proposed methodology for dilation and erosion is linked to
well-known methods defined in the context of image pro-
cessing. With an unweighted (w = 1) 4-adjacency grid
graph associated with a grayscale image defined as func-
tion f0:V⊂Z2→R, our formulation of dilation (p = 2)
recovers the exact Osher-Sethian [5] upwind first order dis-
cretization scheme of dilation. The proposed dilation ex-
pression also recovers the classical algebraic flat morpho-
logical dilation formulation over graphs. In the case where
p=∞ with a constant discretization time ∆t=1 and a con-
stant weight function (w = 1), (10) becomes for u∈V :

fn+1(u)=fn(u)+ max
v∼u

“
max

`
0, βn

uv

´”
= max

v∼u

`
fn(v), fn(u)

´
. (11)

In that case, the structuring element is provided by both
the graph topology and the vertices’ neighborhoods. For
instance, if we consider a 8-adjacency image grid graph,
it is equivalent to a dilation by a square structuring ele-
ment of size 3×3. It is important to note that for the case

of weighted graphs, the proposed morphological operators
are operators that adapt their behavior according to the im-
portance of weights with their neighbors.

4 Results
Figure 1 presents dilation and closing of an original scalar
grayscale image considered as a function f0:V ⊂Z2→R
that defines a mapping from vertices to grayscale pixel
values. This example shows the adaptative aspect of our
morphological framework. First row of Fig. 1 shows re-
sults for the case where p=∞, ∆t=1. This corresponds
to the algebraic processing. In that case, the graph is a
25-adjacency grid graph (equivalent to a circle structur-
ing element of radius 2, denoted as G2). The last three
next rows show results for the case where p=2. Second
row of Fig. 1 presents results for an unweighted (w=1)
4-adjacency grid graph (denoted as G0. This case corre-
sponds to PDEs-based morphological processing. Differ-
ence between second and third row is that in the latter case,
we use a weighted (w=g1) graph instead of an unweighted
one. These results show the benefits of weights that en-
able to better preserve edge information as compared to
the unweighted cases. Fourth row presents nonlocal patch-
based results. In this example the graph is a 25-adjacency
grid graph weighted by function g1 associated with patches
of size 5×5 as pixel features. These results clearly show
that this morphological processing better preserves image
components such as edges, fine structures and repetitive el-
ements. Figure 2 shows application of morphological alter-
nated sequential filters on 3D data (a mesh, see Fig. 2(a)).
The graph corresponds here to the natural graph represen-
tation of meshes where each vertex is associated to the 3D
spatial coordinates of each mesh point. This latter graph
is weighted by function g1. Figures 2(b) and 2(c) show
the evolution of the simplification for iterations n=10 and
n=50, respectively. It is important to note that the number
of vertices does not change during the filtering process and
vertices have moved to similar spatial coordinates. Fig-
ure 3 shows examples of real world databases processing
within our morphological framework. The first row of this
figure shows the original data sets. Images come from the
United States Postal Service (USPS) handwritten database.
This database consists in grayscale images scanned from
digits 0 to 9. Each image is of size 16×16. In these ex-
periments, we use three randomly subsampled test sets of
100 samples for each database. Graphs associated with
the original data sets are k-NN graphs weighted with func-
tion g2. It is important to note that each vertex of the
graphs corresponds to an image sample and is described
by a 256-dimensions (R16×16) feature vector. Dilation,
erosion and opening operations are respectively shown in
Figure 3. One can note the filtering and simplification ef-
fects of opening operation on the data. Indeed, this opera-
tion tends to reduce the data to new artificial and uniform
image samples. Finally, such morphological operations on



databases can be used as pre-processing steps for data min-
ing purposes.
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Figure 1: Morphological Image Processing with graphs
(see text for details).

5 Conclusion
In this paper, a novel formalism for nonlocal morphol-
ogy on graphs has been proposed. This provides a frame-
work that extends PDEs-based methods to discrete local
and nonlocal schemes. Moreover, this enables to process
by morphological means any high dimensional unorganized
multivariate data represented by a weighted graph. The po-
tentiality and the flexibility of our approach has been illus-
trated for the morphological processing of organized data
(regular domain) and unorganized data (irregular domain).
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