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Nonlocal Discrete Regularization on Weighted
Graphs: a Framework for Image and Manifold

Processing
Abderrahim Elmoataz, Olivier Lezoray, Sébastien Bougleux

Abstract— We introduce a nonlocal discrete regularization
framework on weighted graphs of the arbitrary topologies for
image and manifold processing. The approach considers the
problem as a variational one, which consists in minimizing a
weighted sum of two energy terms: a regularization one that
uses a discrete weighted p-Dirichlet energy, and an approximation
one. This is the discrete analogue of recent continuous Euclidean
nonlocal regularization functionals. The proposed formulation
leads to a family of simple and fast nonlinear processing methods
based on the weighted p-Laplace operator, parameterized by
the degree p of regularity, the graph structure and the graph
weight function. These discrete processing methods provide a
graph-based version of recently proposed semi-local or nonlocal
processing methods used in image and mesh processing, such
as the bilateral filter, the TV digital filter or the nonlocal
means filter. It works with equal ease on regular 2D-3D images,
manifolds or any data. We illustrate the abilities of the approach
by applying it to various types of images, meshes, manifolds and
data represented as graphs.

Index Terms— Nonlocal discrete regularization, Weighted
graph, p-Laplacian, Image and manifold processing.

I. INTRODUCTION

IN many computer science applications, it is necessary to
process images, meshes, manifolds and more generally

data. This refers to the following research fields: image pro-
cessing, computer graphics and data mining.

In the context of image processing, smoothing and denoising
are key filtering processes. Among the existing methods, the
variational ones, based on regularization, provide a general
framework to design such efficient filter processes. Solutions
of variational models can be obtained by minimizing appropri-
ate energy functions. The minimization is usually performed
by designing continuous Partial Differential Equations (PDE),
whose solutions are discretized in order to fit with the image
domain. A complete overview of these methods can be found
in [1], [2], [3], [4] and references therein.

In the context of mesh processing, smoothing and denoising
are also key processes dedicated to noise removal causing
minimal damage to geometric features. Most mesh smoothing
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methods are based on the discrete Laplace-Beltrami regular-
ization or on the discrete curvature regularization [5], [6].
Other smoothing methods, based on feature preserving were
mostly inspired by anisotropic diffusion in image process-
ing [7], [8], [9]. Geometric flows have been extensively used
in mesh processing [10]. In particular, surface flows based
on functional minimization (i.e. evolving a surface so as to
progressively decrease an energy functional) is a common
methodology in geometric processing with applications to
spanning surface diffusion [11], denoising of scanned meshes
[12], shape optimization and surface design [13], minimal
surfaces [14], etc.

In the context of manifold and data processing, dimension-
ality reduction [15], [16], [17] (extracting low dimensional
structure from high dimensional data), clustering [18], [19]
(automatic identification of groups of similar objects) and
classification [20], [21], [22] (assigning labels to instances) are
key processes. In particular, methods based on graph Laplacian
have became increasingly popular in machine learning to
perform any of the above-mentioned key processes. However,
manifolds and discrete data, as images and meshes, can also
contain inner noise. Therefore, regularization occurs as a
natural candidate for manifold processing [23], [24] since
e.g. noise filtering can be useful to avoid overfitting in a
learning process. Manifold regularization denotes also a family
of learning algorithms [20] based on regularization with both
labeled and unlabeled data. Transductive graph learning algo-
rithms and standard methods like Support Vector Machines
[22] can then be considered as special cases of manifold
regularization. All these methods are based on the assumption
that the data lies on a submanifold. However, sampled data
lies almost never exactly on the submanifold due to the noise
scattered around it. Since most previous methods are sensitive
to noise, it is essential to denoise the manifold data to project
it onto a submanifold [25].

As we have just mentioned, regularization is a principle
the interest of which concerns a wide range of computer
science domains. The application of partial and variational
methods to images, meshes, manifolds and any discrete data
processing has shown its effectiveness allowing high quality
regularization processes. However, there are some limitations
to the functionals used in regularization such as total vari-
ational ones [2]. Indeed, the latter are based on derivatives
which consider local features of the data. Since the advent of
the nonlocal means filter [1], the use of nonlocal interactions,
to capture the complex structure of the data, has received a lot
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of interest and has shown to be very effective. A variational
understanding of the nonlocal means filter was first developed
in [26] as a non convex functional and later in [27], [28] as a
convex quadratic functional. Moreover, the use of manifolds
to describe nonlocal interactions of geometric structures in
signals and images has recently been explored [23]. In this
latter work, diffusion over these manifolds is shown to be
equivalent to nonlocal processing methods. However, most
of these variational nonlocal formulations are expressed in a
continuous setting and unfortunately the discretization of the
underlying differential operators is difficult for high dimen-
sional data.

Moreover, whatever the origin of the data (images or
databases), a common representation can be used to model
them: graphs. For the particular case of images, pixels have a
specific organization expressed by their spatial connectivity.
Therefore, a typical graph used to represent images is a
grid graph. For the particular case of unorganized data, a
graph can also be associated with by modeling neighborhood
relationships between the data elements. As a consequence,
by using the same adapted underlying graph representation to
model data with a given organization (images) or without any
(general databases), one can define a framework which can be
used to process general databases. We take that point of view
of processing any data ranging from images to manifolds.

Inspired by continuous regularization of images and recent
works on nonlocal functional for continous regularization, we
propose a general framework extending our previous works
[29], [30], [31], [32] based on a nonlocal discrete regular-
ization on weighted graphs of the arbitrary topologies. This
framework can also be considered as a discrete analogue
of the nonlocal continuous regularization for the case of
images [33], [27]. Furthermore, the proposed framework works
on any discrete data represented by weighted graphs which
enables a nonlocal regularization with equal ease on images
and manifolds. Our approach starts directly with a discrete
variational problem and works with data living on any general
discrete domain. To take into account the nonlocal interactions
in images and manifolds, we explicitly introduce discrete
nonlocal derivatives and functionals on graphs of the arbi-
trary topologies, to transcribe the continuous regularization.
This framework unifies the regularization of images, meshes,
manifolds and data. The latter regularization enables local,
semi-local or nonlocal regularization by using appropriate
graph topologies and edge weights. Let G = (V,E, w) be a
weighted graph consisting in a set of vertices V , a set of edges
E ⊂ V × V , and a similarity weight function w defined on
edges. Let H(V ) be a Hilbert space defined on the vertices of
G. We formalize the discrete data regularization of a function
f0 ∈ H(V ) by the following minimization problem:

min
f∈H(V )

{
Ep

w(f, f0, λ) = 1
p

∑

v∈V

|∇wf(v)|p + λ
2 ‖f − f0‖22

}
,

(1)
where p ∈ (0,+∞) is the smoothness degree, λ is the fidelity
parameter, and |∇wf | represents the weighted local variation
of the function f over the graph. The solution of problem (1)
leads to a family of nonlinear processing methods, parameter-

ized by the weight function, the degree of smoothness, and
the fidelity parameter. There exists two main advantages of
using this framework, which can be considered as a discrete
analogue of continuous regularization on weighted graphs.

First, the regularization is expressed directly in a discrete
setting. Involved processing methods are computed by simple
and efficient iterative algorithms, without solving any PDEs.
Second, the topology of graphs can be arbitrary. Since the
proposed approach is general, any discrete data set can be
transformed into a weighted graph, by using a similarity
measure between data features. Thus, we can consider any
function defined on these data as a function defined on the
graph vertices.

The regularization term in problem (1) is obtained by defin-
ing nonlocal functionals on weighted graphs. The idea of using
functionals on graphs, in a regularization process, has also
been proposed in other contexts, such as semi-supervised data
learning [34], [35] and image segmentation [36]. In this paper,
we introduce a large family of regularization problems based
on the p-Laplacian which is the discrete analogue of the well-
known Euclidean p-Laplacian to graphs. This leads to a family
of discrete linear and nonlinear filters which includes and
extends several well-known models used in image processing
for the classical cases of p = 2 or p = 1. The case of
p < 1 is also considered in this paper. Moreover, the proposed
framework naturally embeds local to nonlocal processing. To
summarize, the proposed regularization framework on graphs
unifies several existing discrete image filters, generalizes them
and extends them to the processing of arbitrary data.

In this paper, we first define functionals on weighted graphs
in Section II. Section III presents the discrete regularization
problem (1), and the associated filter family. Section IV
analyzes the obtained filters and gives relations to existing
methods. In Section V, we show some regularization exam-
ples, in the context of images, meshes, manifolds and data
processing. Last Section concludes.

II. OPERATORS ON WEIGHTED GRAPHS

In this Section, we recall some basic definitions on graphs,
and we define nonlocal operators which can be considered as
discrete versions of continuous differential operators. Anal-
ogous definitions and properties have also been used in the
context of semi-supervised learning [34], and differential cal-
culus on graphs [37], [38].

A. Preliminary Notations and Definitions

A weighted graph G = (V,E, w) consists of a finite set
V = {v1, . . . , vN} of N vertices and a finite set E ⊂ V ×V of
weighted edges. We assume G to be undirected, with no self-
loops and no multiple edges. Let (u, v) be the edge of E that
connects vertices u and v of V . Its weight, denoted by w(u, v),
represents the similarity between its vertices. Similarities are
usually computed by using a positive symmetric function w :
V × V → R+ satisfying w(u, v) = 0 if (u, v) is not an edge
of E. The notation u ∼ v is also used to denote two adjacent
vertices. We say that G is connected whenever, for any pair of



3

vertices (u, v) there is a finite sequence u = u0, u1, . . . , un =
v such that ui−1 is a neighbor of ui for every i ∈ {1, . . . , n}.

Let H(V ) be the Hilbert space of real-valued functions
defined on the vertices of a graph G = (V,E,w). A function
f : V → R of H(V ) assigns a real value f(v) to each
vertex v ∈ V . Clearly, the function f can be represented
by a column vector f = [f(v1), . . . , f(vN )]T . By analogy
with functional analysis on continuous spaces, the integral
of a function f ∈ H(V ), over the set of vertices V , is
defined as

∫
V f =

∑
V f . The space H(V ) is endowed with

the usual inner product 〈f, h〉H(V ) =
∑

v∈V f(v)h(v), where
f, h : V → R.

Similarly, let H(E) be the space of real-valued func-
tions defined on the edges of G. It is endowed with the
inner product 〈F,H〉H(E) =

∑
(u,v)∈E F (u, v)H(u, v) =∑

u∈V

∑
v∼u F (u, v)H(u, v), where F,H : E → R are two

functions of H(E).

B. Difference Operator and its Adjoint
Let G = (V,E,w) be a weighted graph, and let f : V → R

be a function of H(V ). The difference operator of f , noted
d : H(V ) → H(E), is defined on an edge (u, v) ∈ E by:

(df)(u, v) =
√

w(u, v)(f(v)− f(u)). (2)

The directional derivative (or edge derivative) of f , at a vertex
v ∈ V , along an edge e = (u, v), is defined as:

∂f

∂e

∣∣∣∣
u

= ∂vf(u) = (df)(u, v). (3)

This definition is consistent with the continuous definition of
the derivative of a function: ∂vf(u) = −∂uf(v), ∂vf(v) = 0,
and if f(v) = f(u) then ∂vf(u) = 0.

The adjoint of the difference operator, noted d∗ : H(E) →
H(V ), is a linear operator defined by:

〈df, H〉H(E) = 〈f, d∗H〉H(V ), (4)

for all f ∈ H(V ) and all H ∈ H(E).
Proposition 1: The adjoint operator d∗, of a function H ∈

H(E), can by expressed at a vertex u ∈ V by the following
expression:

(d∗H)(u) =
∑

v∼u

√
w(u, v)(H(v, u)−H(u, v)). (5)

Proof: By using the definition of the inner product
in H(E), the left term of (4) is rewritten as:

〈df, H〉H(E) =
X

(u,v)∈E

(df)(u, v)H(u, v)

(2)
=

X

(u,v)∈E

p
w(u, v)(f(v)− f(u))H(u, v)

=
X

(u,v)∈E

p
w(u, v)f(v)H(u, v)−

X

(u,v)∈E

p
w(u, v)f(u)H(u, v)

=
X

u∈V

X

v∼u

p
w(v, u)f(u)H(v, u)−

X

u∈V

X

v∼u

p
w(u, v)f(u)H(u, v)

=
X

u∈V

f(u)
X

v∼u

p
w(u, v)(H(v, u)−H(u, v))

(4)
= 〈f, d∗H〉 =

X

u∈V

f(u)(d∗H)(u).

The proof is completed by comparing the last two equations.

The divergence operator, defined by −d∗, measures the net
outflow of a function of H(E), at each vertex of the graph.

Proposition 2: Each function H ∈ H(E) has a null diver-
gence over the entire set of vertices:

∑
u∈V (d∗H)(v) = 0.

Proof: From Proposition 1,
∑

u∈V (d∗H)(v) is the sum
of terms

√
w(v, u)(H(v, u)−H(u, v))+

√
w(u, v)(H(u, v)−

H(v, u)). Since w is symmetric, then this sum is null.
Other general definitions of the difference operator have

been proposed in the litterature. In particular, the difference
operator recently proposed by Zhou and Schölkopf [34], and
defined by:

(df)(u, v) =
√

w(u, v)

(
f(v)√
gw(v)

− f(u)√
gw(u)

)

with gw(u) =
∑

v∼u w(u, v), is not null when the function f
is locally constant (also pointed out by Hein et al. [39]).
Moreover, its adjoint does not satisfy Proposition 2.

C. Gradient Operator
The weighted gradient operator of a function f ∈ H(V ),

at a vertex u ∈ V , is the vector operator defined by:

∇wf(u) = [∂vf(u) : v ∼ u]T

= [∂v1f(u), . . . , ∂vkf(u)]T , ∀(u, vi) ∈ E.

The L2-norm of this vector represents the local variation of
the function f at a vertex of the graph. It is defined by:

|∇wf(u)| =
√∑

v∼u

(∂vf(u))2

(3)
=

√∑

v∼u

w(u, v)(f(v)− f(u))2.
(6)

The local variation is a seminorm which measures the regu-
larity of a function around a vertex of the graph.

D. A Family of Weighted p-Laplace Operators
Let p ∈ (0,+∞) be a real number. The weighted p-Laplace

operator of a function f ∈ H(V ), noted ∆p
w : H(V ) → H(V ),

is defined by:

∆p
wf(u) = 1

2d∗(|∇wf(u)|p−2df(u, v)). (7)

Proposition 3: The p-Laplace operator of f ∈ H(V ), at a
vertex u ∈ V , can be computed by:

∆p
wf(u) = 1

2

∑

v∼u

γf
w(u, v)(f(u)− f(v)), (8)

with

γf
w(u, v) = w(u, v)(|-wf(v)|p−2 + |-wf(u)|p−2). (9)

Proof: From (7), (5) and (2), we have:

∆p
wf(u) = 1

2

X

v∼u

p
w(u, v)

„
(df)(v, u)

|$wf(v)|2−p
−

(df)(u, v)

|$wf(u)|2−p

«

= 1
2

X

v∼u

w(u, v)

„
f(u)− f(v)

|$wf(v)|2−p
−

f(v)− f(u))

|$wf(u)|2−p

«
.
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This last term is exactly (8).
Remark 1: In (7), ∇wf is chosen to be evaluated at u. If

one chooses to evaluate ∇wf at v, the same expression of (7),
but with a minus sign in (9), is obtained. To have γf

w(u, v) as
a positive expression, we prefer to have ∇wf to be evaluated
at u.
The p-Laplace operator is nonlinear, with the exception of
p = 2. In this latter case, it corresponds to the combinatorial
graph Laplacian, which is one of the classical second order
operators defined in the context of spectral graph theory [40]:

∆wf(u) =
∑

v∼u

w(u, v)(f(u)− f(v)). (10)

Another particular case of the p-Laplace operator is obtained
with p = 1. In this case, it is the weighted curvature of the
function f on the graph:

κwf(u) = 1
2

∑

v∼u

(
w(u, v)
|-wf(v)| +

w(u, v)
|-wf(u)|

)
(f(u)− f(v)).

(11)
If the graph is unweighted (w(u, v) = 1, ∀(u, v) ∈ E), κw

corresponds to the curvature operator proposed in [41], [42]
in the context of image restoration. More generally, κw is the
discrete analogue of the mean curvature of the level curve
of a function defined on a continuous domain of Rn. This is
explained by the following property, which is a rewriting of
Proposition 3.

Corollary 1: The p-Laplace operator of a function f ∈
H(V ) can be expressed, at a vertex u ∈ V , by:

∆p
wf(u) = 1

2

∑

v∼u
e=(u,v)

∂

∂e

(
|-wf |p−2 ∂f

∂e

)∣∣∣∣
u

. (12)

Proof: We show that (12) is equivalent to (8).
From (3), the right term of (12) is equal to:

1
2

X

v∼u
e=(u,v)

p
w(u, v)

„
|$wf(v)|p−2 ∂f

∂e

˛̨
˛̨
v

− |$wf(u)|p−2 ∂f

∂e

˛̨
˛̨
u

«
.

By using (3) again, we obtain exactly the first equation of the
proof of Proposition 3, which completes the proof.

Then, the p-Laplace operator (8) can be seen as an extension
of ∆w and κw. To avoid zero denominator in (11) when p ≤ 1,
the local variation (6) is replaced by its regularized version:
|∇wf(v)|ε =

√
|∇wf(v)|2 + ε2, where ε → 0 is a small fixed

constant [42].

III. REGULARIZATION ON WEIGHTED GRAPHS

Let f0 : V → R be a given function defined on the vertices
of a weighted graph G = (V,E, w). In a given context, the
function f0 represents an observation of a clean function g :
V → R corrupted by a given noise n such that f0 = g + n.
Such noise is assumed to have zero mean and variance σ2,
which usually corresponds to observation errors.

To recover the uncorrupted fonction g, a commonly used
method is to seek for a function f : V → R which is
regular enough on G, and also close enough to f0. This inverse
problem can be formalized by the minimization of an energy
functional, which typically involves a regularization term plus

an approximation term (also called fitting term). In this paper,
we propose to consider the following variational problem:

g ≈ min
f :V→R

{
Ep

w(f, f0, λ) = Rp
w(f) + λ

2 ‖f − f0‖22
}

, (13)

where the regularization functional Rp
w : H(V ) → R is the

discrete p-Dirichlet form of the function f ∈ H(V ):

Rp
w(f) = 1

p

∑

u∈V

|∇wf(u)|p

(6)
= 1

p

∑

u∈V

(
∑

v∼u

w(u, v)(f(v)− f(u))2
) p

2

.

(14)

The trade-off between the two competing terms in the func-
tional Ep

w, is specified by the fidelity parameter λ ≥ 0. By
varying the value of λ, the variational problem (13) allows
one to describe the function f0 at different scales, each scale
corresponding to a value of λ.

The degree of regularity, which has to be preserved, is con-
trolled by the value of p > 0. When p = 2, the minimizer (13)
corresponds to the well-known Tikhonov regularization on
weighted graphs. When p = 1, it is the fitted total variation,
previously proposed on unweighted graphs in [41], [42]. The
more general problem treated in this paper can be seen as a
natural extension of these two latter cases. In the sequel, we
discuss the existence of its solution, then we show that the
solution is based on the p-Laplace operator (8), and we give
an iterative algorithm to approximate it.

A. Existence of the Solution and Regularization Equations
When p ≥ 1, the energy Ep

w is a convex functional of
functions of H(V ). As we have Ep

w(f, f0, λ) → +∞ when
f → +∞, by standard arguments in convex analysis, there
exists a global minimum for the minimizer (13). Then, any
local minimum of Ep

w is a global minimum of Ep
w. Let C(V )

be the set of constant functions f : V → R, such that f(u) = c
for all u ∈ V , c ∈ R. So, Ep

w is also a strickly convex
functional of functions in H(V ) \ C(V ). In this is case, the
minimization of Ep

w has a unique solution. This is also the case
for functions in C(V ). Indeed, Rp

w is translation invariant, e.g.
Rp

w(f + c) = Rp
w(f) for all c ∈ R. Thus, there exists only

one global minimum.
To get the solution of the minimizer (13), we consider the

following system of equations:

∂Ep
w(f, f0, λ)
∂f(u)

= 0, ∀u ∈ V, (15)

which is rewritten as:
∂Rp

w(f)
∂f(u)

+ λ(f(u)− f0(u)) = 0, ∀u ∈ V. (16)

If this system has a solution, then it is the solution of (13).
When p < 1, Rp

w is non-convex, and the global minimimum
of (13) is not insured. However, this case is also considered in
this paper, in order to analyze the behavior of the associated
diffusion processes beyond the usual bound p = 1.

The solution of the system (16) is computed by using the
following property.
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Proposition 4: Let f be a function in H(V ). Then,

∂Rp
w(f)

∂f(u)
= 2∆p

wf(u), ∀u ∈ V. (17)

Proof: Let u1 be a vertex of V . From (14), the u1-th
term of the derivative of Rp

w(f) is given by:

∂Rp
w(f)

∂f(u1)
= 1

p

∂

∂f(u1)

0

@
X

u∈V

 
X

v∼u

w(u, v)(f(v)− f(u))2
! p

2
1

A .

It only depends on the edges incident to u1 . Let v1, . . . , vk

be the vertices of V connected to u1 by an edge of E. Then,
by using the chain rule, we have:

∂Rp
w(f)

∂f(u1)
=−

∑

v∼u1

wu1v(f(v)− f(u1))|-wf(u1)|p−2

+ wv1u1(f(u1)− f(v1))|-wf(v1)|p−2

+ . . . + wvku1(f(u1)− f(vk))|-wf(vk)|p−2,

which is equal to:
∑

v∼u1

wu1v(f(u1)− f(v))(|-wf(u1)|p−2 + |-wf(v)|p−2).

From (8), this latter expression is exactly 2∆p
wf(u1).

By using Proposition 4, the system (16) is rewritten as:

2∆p
wf(u) + λ(f(u)− f0(u)) = 0, ∀u ∈ V, (18)

which is equivalent to the following system of algebraic
equations (see Proposition 3):

(
λ +

∑

v∼u

γf
w(u, v)

)
f(u)−

∑

v∼u

γf
w(u, v)f(v) = λf0(u).

(19)
This can be considered as the discrete Euler-Lagrange equation
associated to the problem (13). Contrary to the continuous
case, it does not involve any PDEs. To get its solution, several
methods can be used, depending on the value of the regularity
parameter p. In the linear case (p = 2), iterative methods
such as the Gauss-Jacobi method, or the infinitesimal steepest
descent method, converge close to the solution of (13). In the
following section, we give a general method to approximate
the solution for p > 0.

B. A Family of Discrete Diffusion Processes
We propose to use the linearized Gauss-Jacobi iterative

method to solve the system (19). Let t be an iteration step,
and let f (t) be the solution of (19) at the step t. Then, the
method is given by the following algorithm:





f (0) = f0

f (t+1)(u) =
λf0(u) +

∑
v∼u γf(t)

w (u, v)f (t)(v)

λ +
∑

v∼u γf(t)
w (u, v)

, ∀u ∈ V.

(20)
It describes a family of discrete diffusion processes, which
is parameterized by the structure of the graph (topology and
weight function), the parameter p, and the parameter λ. Also,
the stopping time can be given a priori, or can be determined
by a stopping criterion. To get the convergence of the process,
a classical stopping criterion is ‖f (t+1) − f (t)‖2 < τ , where
τ → 0 is a small fixed constant.

These processes can be interpreted as forced lowpass filters
on graphs. Let ϕf

w be the filter coefficients defined by:





ϕf
w(u, v) =

γf
w(u, v)

λ +
∑

v′∼u γf
w(u, v′)

, if u 1= v

ϕf
w(u, u) =

λ

λ +
∑

v′∼u γf
w(u, v′)

, otherwise.
(21)

Then, the regularization algorithm (20) is rewritten as:





f (0) = f0

f (t+1)(u) = ϕf(t)

w (u, u)f0(u) +
∑

v∼u

ϕf(t)

w (u, v)f (t)(v).

(22)
One can remark that ϕf

w satisfies the following properties:





ϕf
w(u, u) ≥ 0, ∀u ∈ V

∑

v∼u

ϕf
w(u, v) ≥ 0, ∀u ∈ V

ϕf
w(u, u) +

∑

v∼u

ϕf
w(u, v) = 1, ∀u ∈ V.

(23)

At each iteration of the algorithm (22), the new value
f (t+1)(u) depends on two quantities: the original value f0(u),
and a weighted average of the filtered values of f (t) in a
neighborhood of u.

Proposition 5: For all p ∈ [1,+∞), if the algorithm (20), or
equivalently (22), converges, then it converges to the solution
of the minimizer (13). Moreover, when λ = 0, it converges.

Proof: From (23) we can observe that f (t+1)(u) is a
convex combination of f0(u) and f (t)(v), for all t ≥ 0. Thus
we have:

f (t+1)(u) ≥min
{

f0(u),min
v∼u

f (t)(v)
}

,

f (t+1)(u) ≤max
{

f0(u),max
v∼u

f (t)(v)
}

.

Then, by recursion, an iteration step t ≥ 0 of (22) satisfies the
minimum-maximum principle:

min
v∈V

f0(v) ≤ f (t)(u) ≤ max
v∈V

f0(v), ∀u ∈ V.

Let M(V ) be the set of functions f : V → R such that
‖f‖∞ ≤ ‖f0‖∞, where ‖f‖∞ = maxv∈V f(v) is the infinity
norm. From (22), an iteration can be written as f (t+1) =
φ(f (t)), with φ : M(V ) → M(V ). Then the minimum-
maximum principle stability implies that φ(M(V )) ⊆M(V ).
By considering that λ 1= 0, then each component φ(u) :
M(V ) → R is continuous with respect to ‖.‖∞, for all
u ∈ V . This implies that φ is a continuous mapping. As
M(V ) is non-empty, compact and convex, the Schauder fixed
point theorem [43] shows that there exists f ∈M(V ) which
satisfies f = φ(f). Then, if the algorithm (22) converges, it is
to the limit function f which satisfies (19). Since for p ≥ 1,
(19) is the solution of the minimizer (13), (22) also converges
to the solution of (13).

When λ = 0, we can remark that an iteration of the diffusion
process (22) can be written in matrix form as f (t+1) =
Q(f (t))f (t), where Q is a stochastic matrix (nonnegative,
symmetric, unit row sum). Then, as demonstrated in [44],
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this discrete diffusion process satisfies the minimum-maximum
principle, and converges to a constant as t → +∞.

Remark 2: From Proposition 5, when p < 1 (non-convex
case), if the algorithm (22) (or equivalently (20)) converges to
some function f ∈ H(V ), the latter is not insured to be the
global minimum of the minimizer (13).

IV. REGULARIZATION OF FUNCTIONS ON DISCRETE DATA

The minimization problem (13), and the discrete diffusion
processes (20), can be used to regularize any function defined
on a finite set V = {v1, . . . , vN} of discrete data vi ∈ Rm.
This is achieved by constructing a weighted graph G =
(V,E,w), and by considering the function to be regularized
as a function f0 : V → R, defined on the vertices of G.

A. Construction of Graphs
There exist several popular methods that transform the

set V , with a given pairwise distance measure µ : V × V →
R+, into a neighborhood graph (or similarity graph). Con-
structing such a graph consists in modelizing neighborhood
relationships between data. Among the existing graphs, the
simplest of them is the δ-neighborhood graph, where two data
vi, vj ∈ V are connected by an edge of E if µ(vi, vj) ≤ δ,
with δ > 0. We can also quote the minimum spanning tree,
the k-nearest neighbors graph, the Delaunay triangulation,
or the relative neighborhood graph, as other possible graph
topologies (see [45] for a survey on neighborhood graphs
used in pattern recognition problems). The choice of the
graph topology enables us to perform several regularization
processes that can integrate local, semi-local or nonlocal
interactions between the data. These interactions are said to
be fully nonlocal if the constructed graph is the complete
graph Gc = (V,E,w), with E = V ×V \{(vi, vi) : vi ∈ V }.

The weights are computed according to a measure of
similarity g : V × V → R, which satisfies:

w(u, v) =

{
g(u, v) if (u, v) ∈ E

0 otherwise
(24)

This measure can simply be defined as the inverse of the
distance measure: g(u, v) = µ(u, v)−1. Distances between
data are estimated by comparing their features which generally
depend on the initial function f0 and on the set V . To this aim,
every data u ∈ V is assigned with a feature vector denoted
by F (f0, u) ∈ Rq. Several choices can be considered for the
expression of F , depending on the nature of the features to be
preserved during the regularization. In the simplest case, one
can consider F (f0, u) = f0(u). It also can be computed from
the values of f0, taken in the neighborhood of u, and from the
data in that neighborhood. Therefore, the weight function w,
associated to a given graph, can naturally incorporate local,
semi-local or nonlocal features according to the topology of
the graph. For instance, one can consider the three following
general weight functions:
1) g1(u, v) = 1

ε+µ(F (f0,u),F (f0,v)) ,

2) g2(u, v) = exp
(
−µ(F (f0,u),F (f0,v))2

σ2

)
,

3) g3(u, v) = g2(u, v) exp
(
−µV (u,v)2

2σ2
V

)
,

where σV and σ are two parameters depending respectively on
the variations of the function µV and the function µ over the
graph. These parameters are usually given a priori. Also, they
can be computed automatically from the topology of the graph
and the initial function f0. In particular, σ can be computed
localy at each vertex of the graph (see [31] and references
therein).

The graph topology, associated with one of the above
weight functions, describes a general family of regularizers.
By changing the graph topology and the edge weights, we
naturally obtain an expression of local, semi-local or nonlocal
processing methods which is embedded in the graph structure.
Indeed, once edges are added between vertices, they are
considered as direct neighbors and the processing is local
over the graph. From these considerations, we show that with
an adapted graph topology and a given appropriate weight
function, the proposed family is linked to several filters defined
in the context of image and mesh processing.

B. Related Works in Image Processing
First, we analyze the case of λ = 0, e.g. without approxima-

tion term. In this case, when p = 2, the proposed diffusion (20)
is linear and becomes:






f (0) =f0

f (t+1)(u) =
∑

v∼u w(u, v)f (t)(v)∑
v∼u w(u, v)

, ∀u ∈ V.
(25)

As described in Section III-A, when this latter diffusion is
iterated until convergence, the function f is the solution of the
heat equation ∆wf(u) = 0, for all u ∈ V . Moreover, from
Proposition 5, f is also the solution of the minimization of the
Dirichlet energy R2

w(f) =
∑

u∈V |-wf(u)|2. By considering
a fixed number of iterations, the diffusion (25) performs
Laplacian smoothing, which is a general neighborhood filter
used in image processing. Also, the rewritting of (25) in matrix
form leads to Markov matrix filtering and spectral graph
filtering [40], [46], [24], [30]. Many specific filters are related
to the diffusion (25). In particular, one iteration of the diffusion
process (25), associated with the weight function g3 and the
scalar feature F (f0, .) = f0, is equivalent to the bilateral
filter introduced in the context of image denoising [47], [48].
For this filter, the distance functions µ and µV are Euclidean
distances. Another important case is obtained by using g3

and the feature vector F (f0, v) = [f0(u) : u ∈ Bv,s]T ,
where Bv,s is a bounding box of size (2s + 1) × (2s + 1)
centered at v. In this case, one iteration of (25) corresponds
to the nonlocal means (NLMeans) filter [1] (see also [23]
and [24]). For this latter filter, the function µ is the Euclidean
distance between feature vectors, weighted by a Gaussian
kernel. Bilateral and NLMeans filters have also been redefined
to denoise meshes [49], [50], [51]. These two filters, and all
the filters described by (25), are generalized by the proposed
method: by the regularity parameter p, and by the scale
parameter λ.

When λ 1= 0 and w is constant over the set of edges
(unweighted graph), the diffusion (20) corresponds exactly to
the digitized PDE filters proposed in the context of image
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restoration [41], [42]. If p = 1, it is the fitted TV regulariza-
tion; and if p = 2, it is the Tikhonov regularization.

Table I resumes how our framework includes and extends
some above-mentioned discrete models used in image process-
ing. Table I reads in the following way. The first three columns
present four different configurations given by the parameters λ
and w, and the graph topology. Once these latter parameters
are fixed, one can then consider different values of p (next
columns in the row of each given configuration).

λ w Graph p = 1 p = 2 p ∈]0, 1[

0 g3, semi-local Our Bilateral[47] Our
0 g2 nonlocal Our NLMeans [1] Our
(= 0 constant local TV Digital[42] L2 Digital Our
(= 0 any nonlocal Our Our Our

TABLE I
WORKS RELATED TO OUR FRAMEWORK IN IMAGE PROCESSING.

C. Related Works in Local and Nonlocal Continuous Regu-
larization

The regularization of a given function f0 : V → R,
on a complete graph Gc, takes into account fully nonlocal
interactions between the data of V , through the local varia-
tions |-wf(u)| that are involved in the discrete p-Dirichlet
form:

Rp
w(f)

(14)
= 1

p

∑

u∈V

|-w f(u)|p

= 1
p

∑

u∈V

(
∑

v∈V

w(u, v)(f(v)− f(u))2
) p

2

.

(26)

One can observe that this last functional is exactly the same as
the functional (14), where

∑
v∼u can be replaced by

∑
v∈V

(w(u, v) = 0 if (u, v) 1∈ E). This shows that local, semi-
local and nonlocal regularizations on graphs have the same
formulation. One can remark that the corresponding continu-
ous analogue of the above discrete regularization functionals,
which considers only local interactions, is:

Jp
w(f) = 1

p

∫

Ω
|- f |pdx,

where f : Ω → R is a continuous function defined in a
bounded domain Ω ⊂ Rm. Similarly, the discrete diffusion
process (26) can also be rewritten in a continuous setting
which uses nonlocal interactions:

Jp
w(f) = 1

p

∫

Ω

(∫

Ω
w(x, y)(f(y)− f(x))2dy

) p
2

dx.

In particular, for p = 2 and p = 1, it corresponds to the
nonlocal functionals introduced in [27] and [28] in the context
of image processing:

J2
w(f) = 1

2

∫

Ω×Ω
w(x, y)(f(y)− f(x))2dxdy

J1
w(f) =

∫

Ω

(∫

Ω
w(x, y)(f(y)− f(x))2dy

) 1
2

dx

Moreover, in [52], we show that, with the same gradient
operator, replacing Rp

w by a p-norm leads to the following
expression:

Rp
w =

1
2p

∑

u∈V

|-w f(u)|pp =
∑

v∼u

w(u, v)
p
2 |f(v)− f(u)|p,

which can be considered as the discrete analogue of the
recently proposed continuous nonlocal anisotropic function-
als [27], [28].

V. APPLICATIONS

The family of filters proposed in Section III can be used to
regularize any function defined on the vertices of a graph, or
on any discrete data set.

For any of these different applications, one wants to reg-
ularize a function f0 : V ⊂ Rn → Rm, where f0(u) =
[f0

1 (u), . . . , f0
m(u)]T and f0

i : V → R is the i-th component
of f0(u). When the regularization operates on vector-valued
functions, one regularization process per vector component
is considered. Each component is processed independently
and this comes to have m independent iterative regularization
schemes:






f (0)
i = f0

i

f (t+1)
i (v) =

f0
i (v) +

∑
u∼v

γ(t)
i (u, v)f (t)

i (u)

λ +
∑

u∼v
γ(t)

i (u, v)

(27)

The p-Laplace operator is different for each component and
one has

γ
f(t)

i
w (u, v) = w(u, v)(|-wf (t)

i (v)|p−2 + |-wf (t)
i (u)|p−2).

(28)
for the ith component. Applying the regularization in a
component-wise manner is interesting to develop a computa-
tionally efficient solution. However, component-wise process-
ing of vector-valued data can have serious drawbacks contrary
to vector processing solutions. To overcome this limitation, a
regularization process acting on vector-valued data needs to be
driven by equivalent geometric attributes, taking the coupling
between vector components into account [53], [54]. Therefore,
component-wise regularization does not have to use different
local geometries but a vector one. In the case of p = 2 the
p-Laplace operator is the same for all the components, but in
the case of p 1= 2 it is different. As we have just mentioned,
this is not interesting. Indeed, in this case, the m regular-
ization processes can be totally independent if w(u, v) does
not incorporate any inter-component information resulting in
no coupling between the m independent regularizations. To
overcome this limitation and in order to take into account
the inner correlation aspect of vectorial data, the p-Laplace
operator is considered as being the same for the m component
regularizations (component coupling). This is achieved by
using the same vectorial local variation defined by:

|∇wf (t)(v)| =

√√√√
m∑

i=1

|∇wf (t)
i (v)|2, (29)
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where |∇wf (t)(v)| replaces |∇wf (t)
i (v)|, for all i in (28). The

inner correlation is also considered by using vectorial weight
functions, such as the ones defined in Section IV-A.

In the sequel, we provide examples of obtained results
with the proposed framework for the simplification of images
(scalar or vectorial), polygonal curves, meshes, manifolds,
and databases.

Scalar image smoothing: Let f0 be a scalar image of
N pixels, with f0 : V ⊂ Z2 → R which defines a mapping
from the vertices to gray levels. We illustrate the abilities of
the proposed framework for smoothing scalar images. All
the results are shown at convergence. To this aim, Figure 1
shows sample results obtained with different parameters of
the proposed regularization: different values of p, different
values of λ and different weight functions. The first line
of Figure 1 presents the initial image (first column) and
the computed gradient on the initial image with constant
weights (w = 1, second column), with computed weights
in local (third column, σ = 20 for w = g2) or nonlocal
configurations (fourth column, σ = 4 for w = g2). For the
nonlocal configuration, we consider a 19 × 19 neighborhood
window and a 11 × 11 patch as a feature vector. In the
table part of Figure 1, the first two grouped columns present
local regularizations with constant weights (w = 1) and with
different values of λ (provided above each column). For these
cases, the considered graph is a 4-adjacency grid graph and
the results obtained for p = 1 or p = 2 correspond exactly
to the digital TV and L2 filters of Chan and Osher [41],
[42]. In the table part of Figure 1, the grouped third and
fourth columns present results obtained with the proposed
framework with the same parameters but with computed
weights (w = g2). For these cases, the considered graph is
a 8-adjacency grid graph. The first thing to consider is that
our approach is a direct extension of [41], [42] to weighted
graphs that enables the production of better visual results by
using computed edge weights. The second thing to notice is
that a low value of p enables a better preservation of edges
and fine structures. Moreover, it tends leveling the image
in flat zones. Changing the value of parameter λ enables
us to obtain solutions either close or far from the original
image. All these noticed points become more evident once
one uses a nonlocal configuration which enhances once again
the preservation of edges and the production of flat zones.
Nonlocal results are provided in last column of the table
part of Figure 1. This shows how our proposed frameworks
generalizes the NLmeans filter [1].

Vectorial image smoothing and denoising: Let f0 be
a color image of N pixels, f0 = [f0

1 , . . . , f0
N ]T with

f0 : V ⊂ Z2 → R3 which defines a mapping from the
vertices to a vector of color channels. Figure 2 presents
several results of image denoising on an original image
(Figure 2(a)) corrupted by Gaussian noise (σ = 15, PSNR
between original and corrupted images is 85.04db, Figure
2(b)). Results are shown at convergence. Figures 2(c), (f), (i)
present results of a local processing, for p = 2, p = 1 and
p = 0.7, on a 8-adjacency grid graph with edges weighted

(a) Original. (b) Corrupted.

F (f0, v) = f0(v) F (f0, v) : 5× 5 patch
w = g2 w = g2 w = g1

p
=

2

(c) (d) (e)

p
=

1

(f) (g) (h)
p

=
0
.7

(i) (j) (k)

Fig. 2. Image denoising illustration on an original color image (Figure
2(a)) corrupted by Gaussian noise (Figure 2(b) with σ = 15, PSNR between
original and corrupted images is 85.04db). Results are provided for different
values of p for local (Figures 2(c), (f), (i) with w = g2 and a 3 × 3
neighborhood) and nonlocal processing (Figures 2(d), (g), (j) for w = g2,
Figures 2(e), (h), (k) for w = g1, both with a 11 × 11 neighborhood and
5× 5 patch).

by g2 and F (f0, v) = f0(v). This extends the vectorial
digital TV filter [42] to weighted graphs as mentioned above
for scalar images. Figures 2(d), (g), (j) present results of a
nonlocal processing, for p = 2, p = 1 and p = 0.7, on a
120-adjacency grid graph (a search window of size 11 × 11)
with edges weighted by g2 and F (f0, v) defined on a patch
of size 5 × 5. Figures 2(d), (g), (j) present results with the
same nonlocal parameters except that w = g1. Parameters λ
and σ (for w = g2) are automatically estimated (see in [31]
for further details). A visual analysis of the results shows
that values of p ≤ 1 enable a better preservation of edges
while increasing the graph connectivity and using patches for
similarities enable to better preserve some details. Figures
2(i)-(k) show the importance of the similarity measure for
computing the edges weights. Indeed, with w = g1, an
over-smoothing effect is obtained without preserving details.
This confirms that this is not a nonlocal view but the use of an
appropriate similarity measure which enables the preservation
of fine structures.

Image simplification: On the contrary to classical image
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f0 : V → R |$f0
w=1(u)|, |$f0

w=g2 (u)|, |$f0
w=g2 (u)|,

F (f0, v) = f0(v) F (f0, v) = f0(v) F (f0, v) : 11× 11 patch

w = 1, w = g2, w = g2,
F (f0, v) = f0(v) F (f0, v) = f0(v) F (f0, v) : 11× 11 patch

λ = 0.05 λ = 0.005 λ = 0.05 λ = 0.005 λ = 0.5

p
=

2
p

=
1

λ = 0.005 λ = 0.0 λ = 0.005 λ = 0.0 λ = 0.5

p
=

0
.7

p
=

0
.1

Fig. 1. Scalar image simplification on a gray level image with different parameters values of p, λ and different weight functions in local or nonlocal
configurations. First row presents the original image and the gradient in different configurations. Next rows present simplification results where each row
corresponds to a value of p (see text for more details).

simplification which considers grid graphs, one can simplify
an image by first considering a fine partition of this image
(or over-segmentation), where the pixel values of each region
of the partition are replaced by the mean or the median
pixel value of this region. The partition can be associated
with a Region Adjacency Graph (RAG), where vertices
represent regions and where edges link adjacent regions. Let
G = (V,E, w) be a RAG. Let f0 : V ⊂ Z2 → Rm be
a mapping from the vertices of G to the mean or median
value of their regions. Then, the simplification is achieved by
regularizing the function f0 on G. Moreover, we can build an
irregular pyramid of partitions by alternating simplification

(only one iteration) and graph decimation since one iteration
of the simplification brings neighbor vertices to similar
models. We present the results of a local simplification
performed with different values of p and λ after t = 5
iterations of sequential graph filtering and graph decimation.
Edges of the RAG are weighted by g1. The graph is decimated
along the iterations by merging regions the difference of
which is lower than a given arbitrary threshold of 2 in our
experiments. First row of Figure 3 presents the original image,
its fine partition (obtained by the concept of homogeneous
zones [55]) and the associated color median image (m = 3).
When a color median image is presented in Figure 3, we
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provide the PSNR between the original and the color median
image. When a partition is presented in Figure 3, we provide
the number of vertices of the RAG. Last rows of Figure 3
present results (color median and partition images) where
each row corresponds to a value of p for two different values
of λ. When λ = 0, a small value of p enables a better
preservation of the initial image content with a lower number
of vertices. When λ 1= 0, a small value of p also enables
a good preservation of the initial image content but with a
higher number of vertices. It is worth noting that merging
similar regions to decimate the RAG during the simplification
enables to accelerate the simplification process. Therefore,
the use of the RAG instead of the classical grid-graph enables
a faster processing [29], [56] since there are less vertices as
compared to the number of pixels. Similar works based on
RAGs have also been proposed [57], [58].

154401 pixels |V | = 23916 20.60dB
λ = 0 λ = 0.1

p
=

2

20.39dB |V | = 12879 20.50dB |V | = 8979

p
=

1

20.44dB |V | = 5090 20.56dB |V | = 11805

p
=

0
.7

20.50dB |V | = 4213 20.59dB |V | = 15583

Fig. 3. Image simplification illustration. From an original image, one
computes a pre-segmentation and the associated color median image (images
in first row). Regularization and decimation are applied on the RAG of the
pre-segmentation and simplified region maps and color median images are
obtained for different values of λ and p (next rows).

Polygonal curve and surface simplification: By nature,
polygonal curves and surface meshes have a graph structure.
First, we consider the case of a polygonal curve represented

by a graph: f0 : V ⊂ R2 → R2 and edges are weighted by
a constant w = 1. Figure 4 presents results of filter (27) on
a polygonal curve. The behavior is studied and illustrated
in Figure 4 for different values of parameters p and λ for a
local regularization. First, as attended, acting on parameter
λ enables to reach different levels of simplification. One
important thing to note here is that the presented graphs all
have the same number of vertices: simplification enables
to groups similar vertices around high curvature regions.
The second thing to point out is that acting on p enables to
perform a denoising of the original graph but also to smooth
(for p ≥ 1) or to preserve sharp angles (for p < 1).

G = (V, E, w = 1) f0(V ) = V

p = 2, λ = 1 p = 2, λ = 0.05 p = 2, λ = 0.01 p = 2, λ = 0.002

p = 1, λ = 15 p = 1, λ = 2 p = 1, λ = 0.6 p = 1, λ = 0.2

p = 0.7, λ = 20 p = 0.7, λ = 2.5 p = 0.7, λ = 0.6 p = 0.7, λ = 0.01

p = 0.001, λ = 100 p = 0.001, λ = 40 p = 0.001, λ = 1 p = 0.001, λ = 0.0001

Fig. 4. Behavior of the regularization of a polygonal curve G (first row, first
column), by using the discrete diffusion process (until convergence). First
row presents the graph constructed over an initial set of points. Next rows
present simplification results where each row corresponds to a value of p.
For each p, the four regularizations are obtained with decreasing values of
the scale parameter λ > 0. The original mesh (|V | = 24930) is from Shape
Repository, Aim@Shape Project (http://shapes.aim-at-shape.net).

Second, we consider the case of surface meshes. Let V
be the set of mesh vertices, and let E be the set of mesh
edges. If the input mesh is noisy, we can regularize vertex
coordinates or any other function f0 : V ⊂ R3 → R3 defined
on the graph G = (V,E, w). Results of filter (27) are given
in Figure 5 for triangular meshes with a local regularization
for edges weighted by function g1. We can observe the same
key points as with polygonal curves. Moreover, the shrinkage
effect obtained with p = 1 or p = 2 when λ → 0 is highly
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reduced with low values of p which shows the benefits of
our approach (see the cropped and zoomed areas in three
last columns of the first row in Figure 5). As for image
simplification on a RAG, one could also merge vertices along
the iterations as they become similar.

Manifold smoothing: Graph-based methods have recently
emerged as a powerful tool for analyzing high dimensional
data that has been sampled from a low dimensional sub-
manifold [17], [20]. These methods begin by constructing a
graph in which the nodes represent input patterns and the
edges represent neighborhood relations. The resulting graph
(assumed connected) can be viewed as a discretized approxi-
mation of the submanifold sampled by the input patterns. Let
G = (V,E,w) be a graph defined over the manifold. Typical
graphs are the complete graph and the k-nearest neighbor
graph. Typical manifolds being image libraries, we consider
the USPS handwritten digit database for illustration. Each digit
is a 16 × 16 image which is considered as a vector of 256
dimensions. Let f0 : V → R16×16 be a mapping from the
vertices of G to the elements of the manifold. We consider
the complete graph weighted by function g2 and constructed
over the manifold. To each vertex is associated a feature vector
representing each digit. The filter (27) is considered (256
parallel coupled regularization processes are performed) with
p = 2 and different amounts of data attachment. Since the
complete graph is considered, the regularization is naturally
nonlocal. Figure 6 presents regularization results on 200
digits from the USPS database. Without the data term, the
manifold reduces to its main digit which is an artificial one
since the manifold is smoothed. By increasing the data term,
the regularized manifold remains closer to the original one.
Such manifold regularization can be useful for classification
purposes on a noiseless submanifold [25] extracted from a
noisy manifold.
Data smoothing: Given any data, the latter can be associated
with a graph by considering a similarity measure. Therefore,
any database can be regularized with our method as long as it
is associated with a graph structure. To show the efficiency of
such processing, we consider two well-known databases: Iris
and Ionosphere [59]. Iris database contains 3 classes of sam-
ples in 4 dimensions with 50 samples in each class. Ionosphere
database contains 2 classes of samples in 34 dimensions with
for each class 225 and 126 samples. Figure 7(a) presents a
pairwise feature projection of the Iris database. Due to the high
dimensionally of Ionosphere, only few relevant feature pairs
projections are shown. With such real-worl databases, some
noise is present and data smoothing is therefore of interest.
Let G = (V,E, w) be a graph defined over the data. Let
f0 : V → Rm be a mapping from the vertices of G to the
elements of the database (m = 4 for Iris and m = 34 for
Ionosphere). We consider a complete graph and regularization
is performed with p = 2 and λ = 0.01 after t = 10
iterations. Figure 7(b) presents the regularization result on
original Iris data depicted in Figure 7(a). Figure 7(d) presents
the regularization result on original Ionosphere data depicted
in Figure 7(c). One can see the benefits of the regularization:
input points which belong to the same class tend to be closer

than in the original database. Therefore, this is an efficient
method to map input points into a regularized space where
clusters are more easily separable: the submanifold where the
data lies has been recovered. This effect is illustrated by the
results obtained with a standard k-means classification on the
original and the regularized versions: the processing enables
to increase the recognition rate.

VI. CONCLUSION

We proposed a general discrete framework for regularizing
real-valued or vector-valued functions on weighted graphs
of arbitrary topology. The regularization, based on the p-
Laplace operator, leads to a family of nonlinear iterative
filters. This family includes the TV digital filter, the nonlocal
means filter and the bilateral filter, widely used in image
processing. Also, the family is linked to spectral graph filtering
and is the discrete analogue of recent continuous nonlocal
regularizations.

The choice of the graph topology and the choice of the
weight function enable one to regularize any discrete data
set or any function on it. Indeed, the data can be structured
by neighborhood graphs weighted by functions depending on
data features. This can be applied in the contexts of image
smoothing, denoising or simplification. We also show that
mesh smoothing and denoising can be performed by the same
filtering process. Similarly, manifolds can be processed by the
same means to recover a noiseless submanifold from a noisy
manifold.
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