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AbstrAct

The segmentation of microscopic images is a challenging application that can have numerous applica-
tions ranging from prognosis to diagnosis. Mathematical morphology is a very well established theory to 
process images. Segmentation by morphological means is based on watershed that considers an image 
as a topographic surface. Watershed requires input and marker image. The user can provide the latter 
but far more relevant results can be obtained for watershed segmentation if marker extraction relies 
on prior knowledge. Parameters governing marker extraction varying from image to image, machine 
learning approaches are of interest for robust extraction of markers. We review different strategies for 
extracting markers by machine learning: single classifier, multiple classifier, single classifier optimized 
by model selection.
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IntroductIon

The visual evaluation of microscopic slides is a 
tedious task, which requires hard concentration 
of the pathologist screening the specimen under 
study. With the advent of image processing as an 
efficient way to extract objects of interest in im-
ages, the automatic analysis of images acquired 
from light microscopes has become an emerg-
ing and challenging image analysis application. 
Microscopic image analysis schemes are usually 
threefold: image segmentation, objects features 
computation, objects classification. We propose 
to focus on the first part of this scheme for the 
segmentation of microscopic images of bronchial 
cytology stained by the international coloration 
standard of Papanicolaou and acquired in light mi-
croscopy. The aim of the segmentation is to extract 
cells in images; cells being composed of a nucleus 
and a cytoplasm. Segmentation being in general 
a difficult task, machine learning has emerged as 
a key component of intelligent computer vision 
programs when adaptation is needed (Arif, 2007). 
In this Chapter, we consider the segmentation of 
microscopic images by morphological methods 
and show how to integrate machine learning into 
a morphological segmentation scheme.

bAckground

Mathematical Morphology is a very well estab-
lished theory to process images (Serra, 1988). 
The watershed is the basic tool of Mathematical 
Morphology for segmentation. It has proved to be 
a powerful tool and it is used in a large number 
of applications, such as, medicine, remote sens-
ing, robotics, and multimedia (Meyer, 2001). The 
parameters for a watershed are marker and input 
images (Soille, 2004). The watershed grows the 
markers based on a flooding simulation process 
by considering the input image as a topographic 
surface. The problem is to produce the divide-line 
image on this surface (Roerdink, 2000). Each 
marker is associated to a color. The topography 

is flooded from below by letting colored water 
rise from the holes with its associated color, at 
an uniform rate across the entire image. When 
the rising water of distinct colors would merge, 
a dam is built to prevent the merging. Figure 1 
illustrates such a process on a color hematol-
ogy image with two different sets of markers 
(provided by the user or by a machine learning 
algorithm). The most difficult problem when 
using watershed is of course the definition of ap-
propriate markers with minimal efforts (Rivest, 
1992; Meyer, 2001). User provided markers can 
be attractive for interactive segmentation but for 
automatic segmentation other techniques have to 
be considered. An accurate extraction of reliable 
markers requires prior knowledge on the latter 
(color, texture, shape, etc.). To incorporate such 
prior knowledge for the automatic extraction of 
markers, machine-learning techniques (Derivaux, 
2007; Lezoray, 2002; Levner 2007) are the most 
natural candidates. Figure 2 provides a schematic 
view of all components involved in the design of 
a morphological segmentation scheme relying on 
machine learning algorithms for marker extraction. 
To perform morphological color image segmenta-
tion, a machine learning based classification of 
pixel feature vectors is done. The result is labeled 
in connected components and refined by a color 
watershed. To infer a proper machine learning 
based pixel classifier, an image database with an 
associated ground truth is constructed and pixel 
feature vectors are shared among classes as a basis 
for supervised learning. In the following Sections, 
conceiving of each one of these components is 
described.

MAchIne LeArnIng In
MorphoLogIcAL segMentAtIon 
of MIcroscopIc IMAges

Machine Learning

Far more relevant results can be obtained for wa-
tershed segmentation if marker extraction relies 
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Figure 1. Segmentation by watershed: a) original hematology image, b) 3D view of the image as a 
topographic surface c) user-defined inner and outer marker after connected components labeling, d) 
user-defined markers superimposed, e) superimposed regions of color watershed with c) as markers, f) 
Machine Learning based marker extraction after connected components labeling, g) Machine Learning 
based markers superimposed, h) superimposed regions of color watershed with f) as markers. Regions 
colored in black in marker images ((c) and (f)) correspond to unlabeled pixels, other pixels correspond 
to region seeds.

Figure 2. Schematic view of components involved in the design of a morphological segmentation scheme 
relying on machine learning algorithm for marker extraction.

(a) (b) (c) (d)

(e) (f) (g) (h)
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on prior knowledge. Parameters governing marker 
extraction varying from image to image, machine 
learning approaches are of interest for robust 
extraction of markers. However, with the use of 
machine learning algorithms for the extraction 
of seeds, one can consider either unsupervised 
or supervised learning approaches. Unsupervised 
approaches do not make use of any learning step 
and supervised methods do need a learning step 
to infer an appropriate model of the data. The two 
approaches (unsupervised or supervised learning) 
have benefits and defects, and it is often difficult to 
make a choice between both. A machine learning 
algorithm is a recognition tool called a classifier 
that provides class memberships information for 
a vector received in input. Therefore, a classifier 
aims at building a function F that maps the input 
feature space to an output space. Each example 
(x, y) consists of an instance px X∈ ⊂   and a 
label y ∈ Y = {ω1,...,ωK} where X is the feature 
vector input space and K the number of classes to 
be discriminated. A classifier can be considered 
as a mapping F from instances to labels F: X → 
Y. Usually, classifiers provide class membership 
estimates f(x, ωi ) and the classification of an input 
feature vector x is performed by:

( )( ) arg min ,
i

iF x f x=

We assume that a dataset D of n examples in 
a real-dimensional space p is provided. In the 
sequel, we review some classical unsupervised 
and supervised classifiers (Duda, 2000).

k-Means

Among unsupervised clustering formulations that 
are based on minimizing a formal objective func-
tion, the most widely used is probably k-means 
clustering (Linde, 1980). It consists in finding a 
set of k examples of p called centers, so as to 
minimize the mean squared distance from each 
data example to its nearest neighbor. To classify 

an input feature vector x, the class memberships 
are estimated in terms of Euclidean distance:

( ),
iif x x c= −

where 
i

c  denotes the center of class ωi and ||.|| is 
the Euclidean distance.

Fisher Linear Discriminant Analysis 
(FLDA)

Fisher’s linear discriminant is an unsupervised 
classification method that projects high-di-
mensional data onto a line (denoted by w) and 
performs classification in this one-dimensional 
space (Fisher, 1936). To find this projection, one 
maximizes the following objective:

( )
T

B
T

W

w S wJ w
w S w

=

where SB is the between classes scatter matrix and 
SW the within classes scatter matrix. To classify 
an input feature vector x, the class memberships 
are estimated by:

( ), T
i if x w x b= +

where bi is a threshold deduced from prior prob-
abilities.

Bayesian Classifier

This classifier is based on the Bayesian decision 
theory (Duda, 2000). It is a supervised statistical 
approach to pattern classification that assumes that 
the decision problem is expressed in probabilistic 
terms. For multivariate distributions, mixtures of 
Gaussian distribution models are used. To classify 
an input feature vector x, the class memberships 
are estimated for each class by the equation in 
Box 1. where 

i
 denotes mean attribute vector, 

i
Σ  is conditional covariance matrix of class ωi 
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(normally distributed) and 
i

p  prior probability 
of class ωi.

k-NN

The k Nearest Neighbors method is a well known 
supervised algorithm in the field of machine 
learning (Michie, 1994). Given a training set and 
a distance defined in the feature space, the basic 
k-NN rule consists in searching for the k nearest 
neighbors of an input feature vector. The estimated 
class probabilities are proportional to the number 
of classes among the k nearest neighbors:

( )
( ), ,

, i
i

S x k
f x

k
=

where S(x, ωi, k) denotes the set of patterns among 
the k nearest neighbors to point x that belong to 
class ωi and |.| denotes the cardinal of a set.

Support Vector Machines (SVM)

SVM are supervised classifiers based on the struc-
tural risk minimization principle from statistical 
learning theory (Cristianini, 2000; Vapnik, 1998). 
SVM express predictions in terms of a linear 
combination of kernel functions on a subset of the 
training data, known as support vectors. SVM map 
an input vector x into a high-dimensional feature 
space H through some nonlinear mapping function 
φ(.) and builds an optimal separating hyper-plane 
in that space. The mapping is performed by a 
kernel function k(.,.) that defines an inner product 
in H. A typical kernel is Gaussian kernel:

( )
2

1 2
1 2 2, exp

2
x x

k x x
 −
 = −
 
 

This reduces the training of a SVM to maxi-
mizing a convex quadratic form subject to linear 
constraints. The maximum margin separating 
hyper-plane can be represented as a linear com-
bination of training points called support vectors 
(SV):

( )*

1

n

i i i
i

w y x
=

= ∑

An example of the training set is a support 
vector if * 0i ≥ . Many specific algorithms can 
solve the convex quadratic problem of SVM, 
the most competitive being Sequential Minimal 
Optimization (Platt, 1998). The training algorithm 
produces a decision function where each support 
vector has a αi value characterizing his weight on 
the hyper plane position. The output of a SVM 
for a given input feature vector x is:

( )*( ) ,
n

i i i
i SV

f x y k x x
∈

= ∑

The output of a SVM is not a probabilistic 
value, but non-calibrated distance measurement 
of an example to the separating hyper-plane. 
Platt proposed a method to map SVM outputs 
into positive class posterior probabilities by ap-
plying a sigmoid function to the SVM output 
(Platt, 1999):

( ) ( )( )
1,

1 expif x
Af x B

=
+ +

( ) ( ) ( ) ( ) ( ) ( )11 1, log log log 2
2 2 2i i i ii

T

i
Kf x x x p−

= − − − − Σ − +∑

Box 1.
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where A and B are obtained by minimizing the 
negative log like hood under a test set. Finally, 
SVM are binary classifiers and multi-class deci-
sion functions are usually designed by combining 
several two-class SVM decision functions (Hsu, 
2002).

Multi Layer Perceptrons (MLP)

A MLP is a supervised classifier expressed by a 
network of simple neurons called perceptrons. 
The perceptron computes a single output from 
multiple real-valued inputs by forming a linear 
combination according to its input weights and 
then possibly putting the output through some 
nonlinear activation function (Rosenblatt, 1958). 
A single perceptron is not very useful because 
of its limited mapping ability. The perceptrons 
can, however, be used as building blocks of a 
larger, much more practical structure. A typical 
multilayer perceptron (MLP) network consists 
of a set of source nodes forming the input layer, 
one or more hidden layers of computation nodes, 
and an output layer of nodes. The input signal 
propagates through the network layer-by-layer 
(Dreyfus, 2005). The computations performed 
by such a feed forward network with a single 
hidden layer are:

( )
0 0

,
h dn n

i ij jk k
j k

f x g w g w x
= =

  
=      

∑ ∑

Where wij denotes the weight between neurons 
i and j, nh the number of hidden units, nd the num-
ber of input units and g is a nonlinear activation 
function (e.g. a sigmoid). The supervised learn-
ing problem of the MLP can be solved with the 
back-propagation algorithm.

Image database

When one wants to conceive a segmentation 
method for a given type of microscopic color 
images, it is essential to utilize a data set of repre-

sentative images. This shows several key benefits 
for the conception and the evaluation of a complete 
segmentation scheme. For the considered class of 
microscopic images, a microscopy expert has to 
choose judicious images that well describe the 
whole segmentation problem: all the objects to be 
extracted (and further segmented) are present on 
at least one image. Once the representative images 
are determined, they are manually segmented in 
several classes and objects of interest are extracted. 
This enables the constitution of a database of 
segmented images (a ground truth). This ground 
truth is associated to a set of pixel feature vectors 
shared in several classes that a machine-learning 
algorithm has to learn to categorize. Therefore, a 
ground truth database can be used for the learning 
step of supervised machine-learning algorithms 
(Bayes, k-NN, SVM, MLP) and also as a refer-
ence segmentation to evaluate the relevance of 
an automatic segmentation. In the sequel, we 
will consider a publicly available database of 8 
images from bronchial cytology that have been 
manually segmented (Meurie, 2005).

The use of machine-learning algorithms to 
extract seed from images comes to perform pixel 
feature vector classification. Each pixel of the 
ground truth is associated to a feature vector x 
and a class y. All the couples (x,y) associated to 
ground truth pixels define a dataset of examples 
and a machine learning algorithm has to infer 
a mapping function F as close as possible to 
ground truth. A machine-learning algorithm used 
to categorize pixels in images produces image 
classification and not image segmentation. In an 
image classification, classes are assigned to pixels 
that are not necessarily spatially connected. To 
obtain segmentation from an image classification 
result, one has therefore to perform a labeling of 
connected components. Figure 3 (a)-(b) show a 
microscopic color image from bronchial cytology 
and its ground truth where pixels have been clas-
sified into three classes (background, cytoplasm, 
nuclei). One the opposite, Figure 3 (c)-(d) show 
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typical image segmentations where connected 
components have distinct labels.

Moreover, since color is the main information 
used to classify pixels, different feature vectors 
can be considered by using different color rep-
resentations in different colors spaces (Lukac, 
2006). This change of color representation can 
have high influence on final results. Figure 3(c)-
(d) show two different segmentation results where 

the feature vector associated to pixels is either a 
vector in YCh1Ch2 color space (Figure 3(c)) or a 
vector in RGB color space (Figure 3(d)).

classification and segmentation 
evaluation

An important issue when designing a segmenta-
tion method is the evaluation of results. Having 

Figure 3. Morphological segmentation of a microscopic color image (a) with a Bayesian classifier for 
extracting seeds: in YCh1Ch2 (c) and RGB (d) color spaces. Figure 3(b) presents the ground truth of 
Figure 3(a) where three classes of pixels are shown (black for background, blue for cytoplasm, and 
green for nuclei). F-measures for the nuclei and cytoplasm classes are provided. Figure 3(e) and (f) 
respectively present results of a pixel classification by SVM and further refined by a watershed. qshape 
and qseg measures are provided to globally quantify the segmentation quality.

(a) Original Image (b) Ground truth of (a)

(c) F(nuclei)=0.84, F(cytoplasm)=0.75 (d) F(nuclei)=0.73, F(cytoplasm)=0.72

(e) Classification by SVM (qshape=0,769 and
qseg=7,33)

(f) Machine Learning based morphological
segmentation (qshape=0,492 and qseg=4,58)
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a ground truth obviously facilitates evaluation 
but several precautions have to be undertaken. A 
classical way to assess the performance of a clas-
sifier that produces a classification on image pixels 
is to compute a classification rate for each class. 

Let F be a machine learning algorithm given 
feature vector inputs X and class outputs Y. To 
quantify the error rate of a machine-learning 
algorithm, a loss function is defined to assess if 
the prediction realized is close to the ground truth. 
The error rate (ER) is defined by (Duda, 2000):

( ) ( )( )1, , ,i i
n

ER X Y F l F x y
n

= ∑

and the loss function is usually defined by

( ) 0 if 
,

1 if 
x y

l x y
x y

=
=  ≠

This involves counting the misclassification 
error if input feature vector x is wrongly classified. 
The classification (success) rate is then defined 
as 1-ER(X,Y,Z).

However, if the proportion of elements among 
classes is not well balanced, the classification rate 
is no more confident. This is generally the case 
for feature data sets coming from microscopic 
ground truth images where most of pixels belong 
to background in a very high proportion (higher 
than 80%). A classifier that classifies all pixels as 
background will have a classification rate close to 
80% although it performs very badly. To correct 
this, it is recommended to use a Balanced Error 
Rate (BER) that computes the average of the error 
rates on each class. BER is defined by:

( )( )
( ), ,

1 1( , , ) ,
i j j j i

j j
Y x y yi

BER X Y Z l F x y
Y ∈ =

 
 =
 
 

∑ ∑

Other measures to evaluate classification re-
sults exist. The most used are based on Precision 
and Recall measures. They are obtained from an 
analysis of the classification confusion matrix. 

Let TP denote True Positives, FP False Positives, 
and FN False Negatives that are defined for each 
class by:

( ) ( ) ( ){ }
( ) ( ) ( ){ }
( ) ( ) ( ){ }

, ,  and 

, ,  and 

, ,  and 

i i i i i i i

i i i i i i i

i i i i i i i

TP x y y F x

FN x y y F x

FP x y y F x

= = =

= = ≠

= ≠ =

From the latter, Precision, Recall and F-mea-
sure, can be defined by:

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

Precision

Recall

2Precision Recall
F-measure

Precision Recall

i
i

i i

i
i

i i

i i
i

i i

TP
TP FP

TP
TP FN

=
+

=
+

=
+

For instance, a specific F-measure for the 
evaluation of microscopic image classification 
has been proposed in (Meurie, 2003). Figure 
3(c)-(d) provides such a F-measure for nuclei and 
cytoplasm classes. One can see that this measure 
well reflects how good the classification is with 
respect to ground truth (the higher the F-measure, 
the better).

All previous methods are dedicated to pixel 
classification results evaluation: they do not take 
into account the spatial information in images. 
Therefore, for the case of segmentation evalu-
ation, other specific measures have to be taken 
into account. An excellent review of segmentation 
evaluation methods can be found in (Chabrier, 
2006). However, all these methods are not always 
suited for evaluating microscopic image segmen-
tation results. A more specific method has been 
proposed in (Lebrun, 2007) to evaluate in a single 
measure the segmentation of cells in microscopic 
images. This cell segmentation quality criterion 
qseg takes into account the adequacy qshape between 
the shape of the objects produced by an automatic 
segmentation Ia and an expert segmentation Ie. 
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That criterion also takes into account the num-
ber of missing objects nmissing and the number of 
artifact objects nartifact. Definition of that criterion 
is, with λ ∈ [0,1]: 

( )missing artifact1seg shapeq q n n= + + −

Constant λ makes it possible to favor a segmen-
tation that limits the number of missing objects 
as compared to the number of artifact objects. In 
the case of cell segmentation, it is essential that 
no cell is lost, even if that forces to keep some 
artifacts, so a typical value is λ = 0,9. The shape 
adequacy qshape is defined as following: 

( )( )
( ) ( )

2
max

1 min , ,
a e

shape e e
I p I pa

q d p I d
I ≠

= ∑

In the latter, de(p,Ie ) corresponds to the distance 
between the pixel p and its nearest pixel belonging 
to the shape edges in expert segmentation Ie. dmax 
value aims at restricting the effect of weighting 
decrease when pixels are close to expert segmen-
tation boundaries. In Figure 3, values of qseg and 
qshape are provided for two images obtained from 
image classification by SVM, and further refined 
by a watershed. Obtained values efficiently quan-
tify segmentation results (the lower qseg value, the 
better) as confirmed by visual analysis.

Multiple Classifier Fusion

In this Section, a complete morphological seg-
mentation scheme based on machine learning 
techniques for marker extraction is designed for 
the automatic segmentation of bronchial color 
microscopic images. First, the abilities of different 
machine learning algorithms are studied for sole 
pixel classification. Given an image as input, each 
classifier processes an image by assigning a label 
to each pixel. Unsupervised classification directly 
treats each image without exploiting any model 
inferred from an image database whereas this is 
the case for supervised classification. Whatever 

the classifier, its hyper-parameters and feature 
vector used to represent a color pixel have serious 
influence on final results. It is therefore essential 
to choose the best representation and parameters. 
This is performed in cascade: first, each classifier 
has its parameters optimized, and second the best 
pixel color features are determined, both steps 
with respect to F-measure. Once this is done, a 
set of different classifiers is obtained, operating 
on different pixel representations and having dif-
ferent abilities to extract seeds. Table 1 presents, 
for each of the abovementioned classifiers, the 
retained color feature vector used to represent 
pixels so as to obtain the best results in terms of 
F-measure for the extraction of cytoplasm and 
nuclei. This F-measure is measured and averaged 
over all the comparisons with ground truth im-
ages. As shown in Table 1, the color representation 
has high influence on results and classifiers do 
not respond in the same way to similar feature 
vectors. Moreover, supervised classifiers (SVM, 
Bayes, MLP and kNN) tend to provide better 
pixel classification results in terms of F-measure. 
Figure 4 presents classification results for a color 
microscopic image with classifiers of Table 1.

Previous results have shown that pixel clas-
sification is a good candidate for marker extrac-
tion. However, it remains difficult to choose only 
one single classifier for extracting markers since 
results obtained by some of them are very close. 
Despite this, SVM, Bayes, kNN and k-means 
can be retained as the most reliable classifiers. 
Therefore, this first step of classifier evaluation 
was essential to retain the best machine-learn-
ing candidates for marker extraction regarding 
the problem under consideration.

Since it is difficult to choose a single clas-
sifier to perform a marker extraction task, an 
alternative lies in combining outputs of several 
classifiers. Figure 4(h) shows an intersection map 
of several pixel classifications obtained from dif-
ferent classifiers. In this image, pixels colored in 
yellow present cases where at least one classifier 
predicted a different class from the other classi-
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fiers. To alleviate these incoherencies, a classical 
way is to fuse the outputs of several classifiers to 
take a final decision. This comes to do multiple 
classifier fusion. Given a set of m classifiers, a 
combination rule g can be used to fuse results. 
This combination rule is used to estimate class 
membership estimates by (Kuncheva, 2004):

( ) ( ) ( ) [ [{ }( )| , , 1,i j i j ip x g f x j m= = ∀ ∈

where fj(x,ωi ) and φj(ωi ) respectively denote class 
membership estimates by classifier j for class ωi, 
and the confidence in the classification performed 
by classifier j for class ωi. The confidence is a 

value assessing the reliability of a classifier in its 
recognition of a given class. Typical values for 
confidence are provided by evaluation measures. 
Table 2 presents results that show the interest in 
multiple classifier fusion with respect to using 
single classifiers. The confidence of each classifier 
is evaluated with F-measures and only three clas-
sifiers are combined (SVM, Bayes and k-means). 
Two combination rules g are considered (sum and 
majority vote). First, multiple classifier combina-
tion enables to obtain better final classification 
whatever the combination rule, sum combination 
rule outperforming majority vote. Therefore, 
multiple classifier combination is a simple and 

Classifier Color feature vector 100*F(cytoplasm) 100*F(nuclei)
k-means YCh1Ch2 69,5 74,4
FLDA RGB 50,8 72,4
FLDA I1I2I3 57,3 71,9
FLDA HSL 59,9 69,8
SVM YCh1Ch2 77,4 74,2
Bayes YCh1Ch2 72,2 74,6
MLP YCbCr 56,9 73
kNN HSL 79,9 70

Table 1. Pixel classification results with different machine learning algorithms and feature vectors. 
The first four rows concern unsupervised classifiers and the last four rows supervised classifiers. Best 
F-measures are bold faced.

Figure 4. Several pixel classifications ((c) to (g)) of an original image (a) and the intersection map of 
all these classifications (h) illustrating the way they agree altogether.

(a) Initial image (b) Expert ground truth (c) k-Means (d) Bayes

(e) k-NN (f) MLP (g) SVM (h) Intersection map
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efficient method to merge the outputs of several 
classifiers with close accuracies.

As mentioned earlier, pixel classification is 
only one step in a machine-learning based mor-
phological segmentation scheme. To assess the 
quality of marker extraction by machine-learn-
ing means, one needs evaluation of the whole 
segmentation scheme (classification followed by 
watershed) and not only of the sole pixel classi-
fication. These results are presented in Table 2. 
In this case, one evaluates the final segmentation 
obtained through the whole scheme of Figure 2. 
First, whatever the classifier, multiple classifier 
combination for marker extraction of a watershed 
performs always better than single classifier 
marker extraction. Second, spatial refinement 
by watershed enables increasing of the nuclei 
detection rate.

Finally, there are few differences between the 
obtained results. Even if one classifier performs 
slightly better than another one, this is not of high 
importance for the next morphological segmen-
tation step, watershed. However, the previous 
scheme has pointed out which classifier performs 
the best in average: Support Vector Machines. In 
next Section, we show one can globally optimize 
such a single supervised classifier.

Single Classifier Optimization

Working with machine learning algorithms for 
pixel classification involves taking into account 
not only the recognition rate of the base inducer 
but also the processing time needed to perform a 
single pixel classification (Lebrun, 2008). SVM 
are powerful classifiers having high generalization 
abilities, but the decision function build by SVM 
has a complexity that increases with training set 
size (Steinwart, 2004). As a consequence, using 
SVM directly on a huge pixel dataset is not di-
rectly tractable to produce fast and efficient pixel 
classifier (Lebrun, 2008). Therefore, it is essential 
to perform an efficient model selection of SVM 
that achieves a trade-off between recognition rate 
and low complexity of the inducer (the decision 
function). Such a trade-off can be expressed via 
a criterion to optimize (Lebrun, 2007) that will 
be called Decision Function Quality (DFQ) in the 
sequel. A natural way to reduce the complexity 
of decision functions produced by SVM is to 
control the number of support vectors. Since the 
latter is related to training set size, one can control 
complexity by modifying training set size through 
Vector Quantization (Gersho, 1991). As opposed 
to the approach described in previous Section that 
operates in cascade, it is more natural to choose 

Classification scheme 100*F(cytoplasm) 100*F(nuclei)
Classification by sum rule combination 78,3 74,9

Classification by majority vote rule combination 78,1 74,8
Classification refined by Watershed 100*F(cytoplasm) 100*F(nuclei)

k-means + Watershed 72,8 76,2
SVM + Watershed 73,2 75,8
Bayes + Watershed 71,1 76,3

Sum rule combination + Watershed 76,5 76,4

Table 2. F-measures for cytoplasm and nuclei extraction by different combination rules of pixel classifica-
tions (k-means, Bayes, SVM) and by classification refined by watershed (i.e. a complete morphological 
segmentation making use of machine-learning algorithms for extracting markers).
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for a SVM, in a single optimization process, the 
values of the SVM hyper-parameters, and the 
simplification level of the training set, in order 
to optimize the proposed DFQ criterion. Such 
an optimization process is usually named model 
selection. Exhaustive search for model selection 
being not tractable, meta-heuristic have to be 
used, e.g. taboo search (Glover, 1999). Such a 
model selection for pixel classification has been 
proposed in (Lebrun, 2007) to design SVM de-
cision function of high recognition rates while 
being parsimonious. To perform pixel classifica-
tion, three different binary decision functions 
are induced, each one discriminating one class 
of pixel against the others. This is called a one-
against-all decomposition. 

Results obtained with this methodology are 
shown in Table 3. Recognition rate is determined 
using a balanced error rate. Results show that 
training time stays tractable in all cases. Mean 
classification time per image is also tractable (only 
few seconds) as compared with no dataset quanti-
zation (classification time higher than 1 hour). If 
we compare this to results presented in previous 
Section, SVM was probably the best pixel classifier 

but also the slowest. A careful model selection is 
therefore essential. As attended, color space has 
also an impact on recognition rate.

Moreover, one can see that high confidence 
in class memberships is obtained. Classification 
result is close to ground truth but with processing 
times largely lower than for classifiers described 
in previous Section. Finally, to obtain image seg-
mentation from image classification, a watershed 
is performed with as markers the classification 
result of a SVM-based pixel classification after 
model selection. Table 4 shows benefits of refining 
image segmentation obtained by pixel classifica-
tion: better results are always obtained regarding 
sole pixel classification. Figure 5 shows segmen-
tation results with this segmentation scheme in 
comparison with expert segmentation. Globally, 
automatic segmentations have good matchings 
with expert segmentations.

future trends

Future works will concern the adaptation of 
machine-learning based algorithms to the clas-

Color space 1-BER |SV| Training time Mean classification time
RGB 86.55 % 479 2639 10.32
XY1Z 86.80 % 1364 12017 29.22
L*a*b* 86.74 % 745 3856 16.80
L*u*v* 86.35 % 2680 5761 61.98
LCH1 85.97 % 1239 6785 27.40
YCh1Ch2 87.09 % 303 6404 6.58
I1I2I3 86.85 % 2589 4760 54.11
HSL 86.02 % 2520 2899 55.52
YCbCr 86.67 % 519 2668 11.08
Average 86.56 % 1382 5310 30.34

Table 3. Recognition rate (1-BER), total number of support vectors |SV|, training time and mean clas-
sification time (in seconds) per image are given for multi-class decision functions produced with nine 
different color spaces.
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Pixel classification Pixel Classification
refined by watershed

Image qseg qshape q’ qseg qshape q’
0 17.24 1.04 16.20 4.60 0.80 3.80
1 6.11 1.01 5.10 4.36 0.96 3.40
2 11.00 0.90 10.10 6.26 0.66 5.60
3 24.59 2.19 22.40 4.89 1.49 3.40
4 6.34 0.24 6.10 2.30 0.20 2.10
5 6.42 0.52 5.90 2.45 0.45 2.00
6 7.33 0.73 6.60 4.58 0.68 3.90
7 13.99 0.79 13.20 3.17 0.57 2.60
average 11.63 0.93 10.70 4.08 0.73 3.35

Table 4. Cell segmentation quality (qseg), shape quality (qshape) and missed artifact  trade-off quality 
(q’= qseg - qshape) with 8 microscopic images for pixel classification and pixel classification refined by 
watershed.

Figure 5. Cell microscopic images (first row), segmentations produced by SVM after model selection 
refined by watershed (middle row) and expert segmentation (last row).

sification of regions. It is much more natural, 
and presumably more efficient, to work with 
perceptually meaningful entities obtained from 
low-level grouping process. This will transform 
the problem of pixel classification into a problem 
of region classification. However, even if this can 
be attractive in terms of complexity reduction, 
this introduces other problems in terms of region 
description that have to be studied in depth.

concLusIon

Machine Learning algorithms have emerged as 
powerful techniques to introduce adaptation into 
the conception of image processing algorithms. 
For the special case of Mathematical Morphol-
ogy making use of watershed from markers, far 
more relevant results can be obtained with mark-
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ers extracted by pixel classification by machine 
learning algorithms. In this chapter, we described 
how to exploit machine learning for morphologi-
cal segmentation. 
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key terMs

Classification: The process of deriving a 
mathematical function that can predict the mem-
bership of a class based on input data.

Classifier Combination: Classifier combina-
tion consists in combining results obtained from 
a set of classifiers to achieve higher performance 
than each single classifier.

Ground Truth: A ground-truth database is 
a database that provides a list of the objects in 
each image.

Machine Learning: As a broad subfield 
of artificial intelligence, machine learning is 
concerned with the design and development of 
algorithms and techniques that allow computers 
to “learn”.

Mathematical Morphology: Mathematical 
morphology (MM) is a theoretical model for 
digital images built upon lattice theory and topol-
ogy. It is the foundation of morphological image 
processing, which is based on shift-invariant 
(translation invariant) operators based principally 
on Minkowski addition.

Model Selection: Selection of an optimal 
model to predict outputs from inputs by fitting 
adjustable parameters.

Support Vector Machines: SVM map input 
vector to a higher dimensional space where a 
maximal hyperplane is constructed.

Watershed: Segmentation by watershed 
designs a family of segmentation methods that 
consider an image as a topographic relief the 
flooding of which is simulated.


