
Efficient Algorithms for Image and High
Dimensional Data Processing Using Eikonal

Equation on Graphs!

Xavier Desquesnes1, Abderrahim Elmoataz1,
Olivier Lézoray1, and Vinh-Thong Ta2

1 Université de Caen Basse-Normandie, ENSICAEN, CNRS, GREYC Image Team
2 LaBRI (Université de Bordeaux – CNRS) – IPB

Abstract. In this paper we propose an adaptation of the static eikonal
equation over weighted graphs of arbitrary structure using a framework
of discrete operators. Based on this formulation, we provide explicit solu-
tions for the L1,L2 and L∞ norms. Efficient algorithms to compute the
explicit solution of the eikonal equation on graphs are also described. We
then present several applications of our methodology for image processing
such as superpixels decomposition, region based segmentation or patch-
based segmentation using non-local configurations. By working on graphs,
our formulation provides an unified approach for the processing of any data
that can be represented by a graph such as high-dimensional data.

1 Introduction

Initially designed for geometric optics, the eikonal equation has become a very
popular approach for computer graphics and computer vision with numerous
applications. For example, solution of the eikonal equation is used to compute
geodesic distances on discrete and parametric surfaces [1,2]. In computer vision,
one can quote the shape-from-shading problem [3,4], median axis or skeleton
extraction [5], noise removal, feature detection or segmentation [6,7], which can
be solved using the eikonal equation.

The eikonal equation is a special case of nonlinear Hamilton-Jacobi partial
differential equations and is given by:

{
H(x, f,∇f) = 0 x ∈ Ω ⊂ IRm

f(x) = φ(x) x ∈ Γ ⊂ Ω
(1)

where φ is a positive function defined on Ω and f(x) is the traveling time or
distance from the source Γ . Then, the eikonal equation can be expressed by
using the following Hamiltonian:
! This work was supported under a doctoral grant of the Conseil Régional de Basse-

Normandie and of the Coeur et Cancer association in collaboration with the Depart-
ment of Anatomical and Cytological Pathology from Cotentin Hospital Center.

G. Bebis et al. (Eds.): ISVC 2010, Part II, LNCS 6454, pp. 647–658, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

648 X. Desquesnes et al.

H(x, f,∇f) = ‖(∇f)(x)‖ − P (x) (2)

where P is a given potential function.
Most of resolutions rely on two main ingredients: a numerical scheme for dis-

cretization which leads to nonlinear system and an efficient approach to solve
this system. Hamiltonian discretization on Cartesian grids is a well-known prob-
lem. Many numerical Hamiltonian schemes can be found in literature, such as
Godunov or Lax-Friedrich one [8,6]. In the same way, numerical schemes have
been developed in non-Cartesian domain and can be used on both structured
and unstructured meshes [1,6] . Other schemes exist for some particular case of
two and three dimensional manifolds [2].

The static approach to solve the eikonal equation is usually based on a dis-
cretization of the Hamiltonian (2). Numerous methods have been proposed: Rouy
and Tourin iterative schemes [3] based on a fixed-point method that solves a
quadratic equation (but the complexity behaves as O(N2) in the worst case),
Zhao fast sweeping method [9] using a Gauss-Seidel update scheme, Tsitsiklis
optimal algorithm with sorted lists of active nodes [10], or the fast marching
algorithm proposed by Sethian which is the most widely used, to name a few.
Another approach to solve (2) is to consider a time-dependent version:

∂f(x,t)
∂t = −‖(∇f)(x, t)‖ + P (x), x ∈ Ω ⊂ IRm

f(x, t) = φ(x), x ∈ Γ ⊂ Ω

f(x, 0) = φ0(x).
(3)

Recently, approaches have been proposed to transcript partial differential equa-
tions in a discrete setting by using partial difference equations on graphs [11].
These methods have been applied for image and data processing [12]. With these
approaches, the authors in [13] have proposed an adaptation of (3) on weighted
graphs of arbitrary topology. Given a graph G = (V, E, w) their discrete analo-
gous of (3) on graphs is

∂f(u,t)
∂t = −‖(∇−

wf)(u)‖p + P (u) u∈V

f(u, t)=φ(u) u∈V0 ⊂ V

f(u, 0) = φ0(u) u ∈ V

(4)

with V a finite set of vertices , E a set of edges and w is a similarity function
defined on edges. ‖(∇−

wf)(u)‖p denotes the Lp norm of a discrete weighted direc-
tional gradient operator defined on graphs (see Section 2 for detailed weighted
graphs notations and definitions). One can see that formulation (4) needs numer-
ous iterations due to finite propagation speed and CFL conditions to converge
to the solution of the eikonal equation.

A fastest approach to solve the eikonal equation on weighted graphs is to
consider the static version of the equation, which can be solved without expensive
iterations. Then (4) can be rewritten as

{
‖(∇−

wf)(u)‖p = P (u). u ∈ V

f(u) = 0 u ∈ V0 ⊂ V.
(5)

Efficient Algorithms for Image and High Dimensional Data Processing 649

Main contributions
In this work, we propose a static version of the eikonal equation over arbitrary
weighted graphs, based on a framework of discrete operators. Explicit solutions
of that equation are provided for particular values of p ∈ {1, 2,∞}, and ef-
ficients algorithms to obtain such solutions are given. Our general arbitrary
weighted graphs formulation provides several advantages. Such a formulation
enables the processing of a huge variety of discrete data that can be represented
by a weighted graph; i.e. data with any structures or topologies, and embed in
spaces of arbitrary dimensions (these dimensions could in fact be very high).
Considering image processing, one can find a good approximation of euclidean
distance with an appropriate weight function and a large neighborhood [14].
Moreover, the given formulation enables to deal with hierarchical segmentation
or textured images segmentation within a unique formulation. This paper also
proposes an application to high dimensional data clustering.

Paper organization
The rest of this paper is organized as follows. In Section 2, definitions and no-
tations used in this work are provided. In Section 3, we present our adaptation
of the static formulation of the eikonal equation on weighted graphs and pro-
vide explicit solutions for p = {1, 2,∞}. Finally, efficient algorithms that can
consider any graphs are presented to obtain these solutions. Section 4 presents
experiments that show the potentialities of the proposed methodology. Section 5
concludes.

2 Graph Definitions and Operators on Weighted Graphs

We begin by briefly reviewing some basic definitions and operators on weighted
graphs which are the main components of our adaptation of the static eikonal
equation.

Notations and Definitions. We assume that any discrete domain can be modeled
by a weighted graph. Let G = (V, E, w) be a weighted graph composed of two
finite sets: V = {u1, ...un} of n vertices and E ⊂ V × V a set of weighted edges.
An edge (u, v) ∈ E connects two adjacent vertices u and v . The weight wuv of
an edge (u, v) can be defined by a function w : V × V → R+ if (u, v) ∈ E, and
wuv = 0 otherwise. We denote by N(u) the neighborhood of a vertex u, i.e. the
subset of vertices that share an edge with u. In this paper, graphs are assumed
to be connected, undirected and with no self loops.

Let f : V → R be a discrete real-valued function that assigns a real value f(u)
to each vertex u ∈ V . We denote by H(V) the Hilbert space of such functions
defined on V .

Operators on Weighted Graphs. For better comprehension of the next Section, we
now quickly recall some operators on weighted graphs as they are defined in [13].

650 X. Desquesnes et al.

Considering a weighted graph G = (V, E, w) and a function f ∈ H(V), the
weighted discrete partial derivative operator of f is

(∂vf)(u) =
√

wuv(f(v) − f(u)). (6)

Two directional partial derivative operators are defined in [13] but, in this work,
we restrict ourself to the use of the internal one which is defined as

(∂−v f)(u) = −√
wuv min(0, f(v) − f(u)). (7)

The weighted directional discrete gradient (∇−
wf)(u) defined at a vertex u ∈ V

is the vector of all internal partial derivatives:

(∇−
wf)(u) =

(
(∂−v f)(u)

)T

(u,v)∈E
(8)

the corresponding Lp norm is

‖(∇−
wf)(u)‖p =

(
∑

v∼v

wp/2
uv max(0, f(u) − f(v))p

)1/p

, (9)

and for the L∞ norm we have

‖(∇−
wf)(u)‖∞ = max

v∼u
(
√

wuv max(0, f(u) − f(v))). (10)

One can note that these previous definitions are defined on graphs of arbitrary
topology, and can be used to design a general method for solving the eikonal
equation on any discrete data sets.

3 Proposed Formulation and Algorithms

In this Section, we present our adaptation of the static eikonal equation over
weighted graphs and provide explicit solutions of the equation for particular
values of p ∈ {1, 2,∞}. Efficient algorithms are provided to obtain such solutions.

3.1 Eikonal Equation on Weighted Graphs

Starting from the continuous formulation (2) and inspired by its time dependent
approach over weighted graphs (4), we obtain a discrete adaptation of the static
version of the eikonal equation. Given a graph G = (V, E, w) and a function
f ∈ H(V) : {

‖(∇−
wf)(u)‖p = P (u). u ∈ V

f(u) = 0 u ∈ V0,
(11)

where V0 ⊂ V corresponds to the initial set of seed vertices. Using norms defined
in (9) and (10), we obtain the following equations for the Lp and L∞ norms.

(
∑

v∼v

wp/2
uv max(0, (f(u) − f(v)))p

)1/p

= P (u), p ∈ {1, 2}. (12)

Efficient Algorithms for Image and High Dimensional Data Processing 651

max
v∼u

(
√

wuv max(0, f(u) − f(v))) = P (u), p = ∞. (13)

In next Sections, we present numerical schemes and algorithms to approximate
the solution of these equations.

3.2 Numericals Schemes and Algorithms

As the main contribution of this paper, we propose numerical schemes to solve
the static eikonal equation on arbitrary graphs ((12) and (13)). We emphasize
that these schemes can be directly obtained without any spatial discretization
since all the operators and functions involved in these equations are discrete.

Now, we study the case where p ∈ {1, 2}. With a simple transformation of
variables, from (12) we have

∑

v∼u

[
(x − f(v))+

huv

]p

= P (u)p (14)

where x = f(u), huv =
√

1/wuv and max(0, x) is denoted (x)+. Then (14) can
be rewritten as

n∑

i=1

[
(x − ai)+

hi

]p

= Cp (15)

with n = card(N(u)), ai = {f(vi) | vi ∈ N(u) with i = 1, ..., n} and C = P (u).
One can remark that (15) is independent of the graph formulation. Let x be the
unique solution of (15). This solution is obtained with an iterative algorithm
which uses a sorted list of neighbors {ai}. Algorithm uses a temporary variable
x̂i which is computed at the iteration i with the following equation. In the case
where p = 1:

x̂i =

[
i+1∑
j=1

(
i+1∏

l &=j,l=1
hl

)
aj

]
+

(
i+1∏
l=1

hl

)
C

i+1∑
j=1

(
i+1∏

l &=j,l=1
hl

) . (16)

For the sake of clarity, solution x̂i for the case where p = 2 is not provided but
can be obtained similarly.

Finally, the unique solution x is equal to x̂i when x̂i ! ai+1. The iterative
algorithm to compute x (for p = {1, 2}) is summarized in Algo. 1.

For the L∞ norm formulation (13), the unique solution x can be simply
computed by the following equation:

x =
n

min
j=1

(aj + hjC) (17)

where n corresponds to the number of neighbors. One can remark that this
equation is a shortest path algorithm (Dijkstra like).

652 X. Desquesnes et al.

Algorithm 1
We know ∃ k, 1 ! k ! n such that x is the unique solution of the equation and
ak ! x ! ak+1

Sort the ai, i = 1, ..., n from the lowest to the greatest values.
an+1 ← ∞
m ← 1
x̂ ← ∞
while x̂ " am+1 and m ! n − 1 do

x̂ ← solution of
∑m

i=1

[
(x−ai)

+

hi

]p
= Cp with p = 1, 2

m ← m + 1
end while
x ← x̂

With this formulation, we need a fast and efficient algorithm to compute the
solution at each vertex of an arbitrary graph. Many Hamilton-Jacobi solvers
can be used to solve (15). The Fast Marching’s updating scheme can be used,
but in this paper, we prefer using Jeong and Whitaker Fast Iterative Method
(FIM) [15]. The main advantage of this method is to solve the Hamilton-Jacobi
equation without expensive data structures.

On an arbitrary graph, FIM consists in an active list of vertices to be updated
and initialized with source vertices. Initial solutions are set to 0 for source ver-
tices, ∞ otherwise. At each iteration t, all vertices in the list are updated, i.e. we
compute the new solution by solving (11), until convergence: |xt+1−xt| ≤ ε with
ε → 0. Converged points are removed and their neighbors are added if further
updates are needed.

Label propagation
Additionally to the previous algorithm, we propose a simple way to propagate
an initial set of labels (from a set of source vertices V0) through the graph,
following the evolution of the propagating fronts. Because our approach allows
to compute a distance map with many sources, our distance map becomes a
nearest-source distance map on each vertex. Then, the propagating front which
arrives at a vertex is necessarily the front coming from the nearest source of
the vertex (according to the weight function sense). So, each time a distance is
updated on a vertex u, we find the neighbor v of u which is the closest to both u
and a seed of V0 and extend the label of v to the current vertex u. The labeling
process can be summarized by the following formula: Each time f(u) is updated,
the label L(u) is given by

L(u) = L(v) | v ∈ N(u), f(v) < f(u) and
f(v)
wuv

= min
z∼u

(
f(z)
wuz

)
(18)

Complexity
If the graph is totally connected, the complexity of the proposed method is
O(N3) (worst case), where N is the number of nodes in the graph. In practice,
we use a sparse k-nearest neighbors graph with k + N , and the worst case com-
plexity decreases to O(Nk2). For comparison, the iterative method [13] depends

Efficient Algorithms for Image and High Dimensional Data Processing 653

on two additional parameters: the number of iterations I needed to reach the
steady state and the number of initial seeds S. This yield to a complexity of
O(NkIS) that is much more higher than ours in practice (since IS , k).

Relation with other Schemes
As proposed above, our formulation is independent of the graph structure. One
can remark that with adapted graph topology and weight function, the pro-
posed formulation is linked to well-known schemes that have been proposed in
literature to solve the eikonal equation such as Osher-Sethian or Dijkstra like
schemes. In fact, with p = 2 and an m-dimensional grid graph, (12) corresponds
to the Osher-Sethian discretization scheme. With an unweighted graph and the
L∞ norm, the Dijkstra like shortest path formulation on graphs can be recov-
ered. Interested readers can refer to [13] for a similar discussion which provide
a detailed demonstration.

4 Experiments and Applications

As previously mentioned, our general graph-based formulation allows to deal
with any discrete data once they can be represented by graphs. In this Section,
we propose some experiments to illustrate that genericity as well as the behav-
ior and the potentiality of such formulation and derived algorithms. All these
experiments are processed with a constant potential function P (u) = 1. Other
potential functions could obviously be used for particular applications.

4.1 Weighted Distances Computation on Graphs

Figure 1 presents the behavior of our formulation for weighted distance com-
putation on arbitrary graphs. For the sake of clarity, the graph used in these
experiments was obtained from a grayscale image (Fig.1(a)), with different neigh-
borhoods and weighted functions. Except for the last column, all results are com-
puted with a given weighted function that does not depend on the original image
and show the propagating front from the node corresponding to the central pixel
of the image (white line are superimposed level-sets). Results (b), (f) and (g) are
computed with a 4-adjacency graph, with a constant weight function f1 = 1 and
p = 1, 2,∞, respectively. The third and fourth columns show the same distance
computation, with respectively 8-adjacency and 16-adjacency for p = 1 on the
first line and p = ∞ on the second. The weight function is provided from [14]
and weights each edge in order to reduce the regular-grid metrication errors.
One can remark that such graph construction with large neighborhood allows
to better approximate the euclidean distance on regular grid. The last column
illustrates the weighted distance computation on a 4-adjacency graph using a
weight function f2 = e−d2

uv
σ2 which holds the similarity between two nodes u and

v. The distance is computed from the node corresponding to the top left pixel of
the image and the resulting propagating front for p = 2 and p = ∞ are shown at
Fig.1(e) respectively Fig.1(j). Because the weight function is designed to catch

654 X. Desquesnes et al.

the topology of the image, the propagating front on the associated graph evolves
in a constant way on regular areas (as background or the interior of the apple)
and slows down on boundaries. Now, using appropriate graph construction and
weight function, we will illustrate the interest of computing such propagating
fronts on graphs for image segmentation.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 1. Illustration of front propagation and weighted distances computation on graph
with different configurations (neighborhood), weight functions and p values. Each image
represents a weighted distance map from a pixel seed at the center of the image or at
the top left corner. See text for details.

4.2 Image Processing

Image Segmentation using Graphs
The objective of the following examples is to illustrate both the genericity of our
formulation and the potential of graphs for image processing. Figure 2 presents
two images to segment and the associated initial sets of labels. One can remark
that each image owns sub-regions of a same class which are not spatially con-
nected (the sky in the first image, or the herd of elephants in the second one).
The segmentation is performed on a reduced version of images, a RAG, obtained
from a superpixel decomposition. The decomposition and the segmentation are
both produced using graphs and our proposed algorithms. Initially developed by
Ren and Malik [16], superpixels are an efficient way to reduce image complexity
by grouping pixels in a region map while preserving contours. With TurboPixels
[17], Levinshtein et al. have proposed an implementation of superpixels in which
image decomposition is obtained by dilating a regular grid of seeds so as to adapt
to local image structure. As TurboPixels, our implementation uses a regular-grid
of seeds but seeds dilation is controlled by our label propagation method (18)
instead of iterative evolving equations. In these examples, we use a 4-adjacency
grid graph weighted from the similarity between each connected pixels and we
compute the propagating front with p = ∞. Resulting partitions are shown in
Fig.2. From the obtained partition we associate a weighted RAG coupled with a

Efficient Algorithms for Image and High Dimensional Data Processing 655

2-nearest-symmetric-neighbors graph (2-NSNG) to allow labels to grow beyond
local neighborhood. In other words, each node of the RAG is also connected to
its two most similar nodes in the whole RAG. Second column of Fig.2 shows
these supplementary edges for few nodes (obviously all nodes have additional
edges). Then, the same labeling method is performed on these new graphs in
order to obtain the final segmentation (third column of Fig.2).

Fig. 2. Image segmentation using graphs (Images are extracted from the Berkeley
Segmentation DataSet). The first column presents initial sets of label. The second one
shows the RAGs obtained from superpixel decomposition and their 2-NSNG edges (for
the sake of clarity additional edges are shown for only few nodes). Third column gives
the final segmentations.

One can remark the particularly segmented herd of elephants from a unique
label on the left elephant. Finally, we have performed these segmentations only
using two successive graph representations of the images and the eikonal equa-
tion’s based label propagation method proposed in this paper.
Readers interested in semi-supervised segmentation algorithms based on graphs
should refer to other recent approaches, as those implementing random walk [18]
or graph cuts [19].

Textured Image Segmentation using High Dimensional Pixel Characterization
and Large Neighborhood
The following experiments now show advantages of our method to segment im-
ages with texture using high-dimensional pixel characterization and large neigh-
borhood i.e. non-local patch based configurations (interested readers can refer
to [13] for more details). Figure 3 shows semi-supervised segmentation using two
different graphs. These graphs are computed from the initial image (Fig.3(a))
where initial labels are superimposed. The first graph is a weighted 4-adjacency
grid graph where each pixel is characterized by its single intensity which only
holds a limited local structure of the image. Figure3(b) shows the segmentation

656 X. Desquesnes et al.

(a) Labels (b) Local (c) Non-Local

Fig. 3. Segmentation using patches. This figure shows the boundaries between each
resulting partition with only local configuration using a 4-adjacency grid graph (b),
or local and non-local configuration using a large 24-neighborhood and a patch-based
pixel representation in a 25-dimensional space (c).

Fig. 4. Handwritten digits database clustering. Each digit is embedded in IR28×28. The
left column shows initial graphs. Second column shows the final classification obtained
by using label propagation on graphs. In the resulting graphs, nodes marked with the
first label are surrounded with a square.

Efficient Algorithms for Image and High Dimensional Data Processing 657

result with this graph. To avoid local structure restriction we build a second
graph as a 24-neighbors graph, where each pixel is connected to every pixel in
a 5 × 5 window centered on the pixel (excepting itself). In order to characterize
texture, each pixel is represented by a vector of IR25, filled with intensity of every
pixels in a 5× 5 patch centered on the pixel. Figure 3.c shows the segmentation
result with this graph which incorporates non-local interactions. One can remark
advantages of non-local configurations in order to extract the desired object as
compared to the local ones.

4.3 High Dimensional Unorganized Data Processing

We now provide experiments of our method with semi-supervised real-world
data clustering. Database used in Fig.4 is a sample of 400 images from MNIST
database. This database consist in handwritten digit images of size 28x28. In
order to cluster these data, a weighted 3-KNN graph is constructed where edges
are weighted with a Gaussian kernel (each vertex is represented by a vector of
IR28×28, filled with intensity of all image pixels.) A few nodes of each class (1
& 0) are marked with initial labels. First line of Fig.4 shows the graph and the
obtained clustering using our label propagation method. In order to introduce
some difficulties and show the accuracy of our method, each node of the previous
graph is also linked to its most dissimilar node. The resulting graph and the
new clusters are shown on the second line of Fig.4. One can remark the good
clustering results in both cases, and the interest of the given methodology in
order to process high-dimensional unorganized data.

5 Conclusion

In this paper, we proposed a solution of the static eikonal equation over weighted
graphs using a framework of discrete operators. We showed that the proposed
formulation leads to explicit solutions of the equation for different Lp norms.
Efficient algorithms to compute solutions and a label propagation method using
the resolution of the eikonal equation on graphs were also provided. The given
experiments have shown the behavior and the potentialities of such methodology
applied to image processing and high-dimensional data clustering. Good results
for high-dimensional unorganized data clustering could suggest interesting out-
going works as hierarchical graph coarse-gaining in order to simplify databases.

References

1. Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. Proc. Natl.
Acad. Sci. USA, 8431–8435 (1998)

2. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Weighted distance maps compu-
tation on parametric three-dimensional manifolds. J. Comput. Phys. 225, 771–784
(2007)

658 X. Desquesnes et al.

3. Rouy, E., Tourin, A.: A viscosity solutions approach to shape-from-shading. SIAM
J. Numer. Anal. 29, 867–884 (1992)

4. Bruss, A.R.: The eikonal equation: some results applicable to computer vision, pp.
69–87 (1989)

5. Siddiqi, K., Bouix, S., Tannenbaum, A., Zucker, S.W.: The hamilton-jacobi skele-
ton. In: ICCV 1999: Proceedings of the International Conference on Computer
Vision, Washington, DC, USA, vol. 2, p. 828. IEEE Computer Society, Los Alami-
tos (1999)

6. Sethian, J.A.: Level set methods and fast marching methods - evolving interfaces in
computational geometry, fluid mechanics, computer vision, and materials science.
In: Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and
Materials Science. Cambridge University Press, Cambridge (1998)

7. Malladi, R., Sethian, J.A.: A unified approach to noise removal, image enhance-
ment, and shape recovery. IEEE Trans. On Image Processing 5, 1554–1568 (1996)

8. Zhang, Y.T., Shu, C.W.: High-order weno schemes for hamilton-jacobi equations
on triangular meshes. SIAM J. Sci. Comput. 24, 1005–1030 (2002)

9. Zhao, H.: A fast sweeping method for eikonal equations. Mathematics of Compu-
tation 74, 603–627 (1999)

10. Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajectories. IEEE Trans-
actions on Automatic Control 40, 1528–1538 (1995)

11. Elmoataz, A., Lézoray, O., Bougleux, S., Ta, V.T.: Unifying local and nonlocal
processing with partial difference operators on weighted graphs. In: Proc. of LNLA,
vol. 44, pp. 11–26 (2008)

12. Bougleux, S., Elmoataz, A., Melkemi, M.: Local and nonlocal discrete regulariza-
tion on weighted graphs for image and mesh processing. Int. J. Comput. Vision 84,
220–236 (2009)

13. Ta, V.T., Elmoataz, A., Lézoray, O.: Adaptation of eikonal equation over weighted
graph. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) Scale Space and
Variational Methods in Computer Vision. LNCS, vol. 5567, pp. 187–199. Springer,
Heidelberg (2009)

14. Boykov, Y., Kolmogorov, V.: Computing geodesics and minimal surfaces via graph
cuts. In: ICCV 2003: Proceedings of the Ninth IEEE International Conference
on Computer Vision, Washington, DC, USA, p. 26. IEEE Computer Society, Los
Alamitos (2003)

15. Jeong, W.K., Whitaker, R.T.: A fast iterative method for eikonal equations. SIAM
J. Sci. Comput. 30, 2512–2534 (2008)

16. Ren, X., Malik, J.: Learning a classification model for segmentation. In: ICCV 2003:
Proceedings of the Ninth IEEE International Conference on Computer Vision,
Washington, DC, USA, p. 10. IEEE Computer Society, Los Alamitos (2003)

17. Levinshtein, A., Stere, A., Kutulakos, K.N., Fleet, D.J., Dickinson, S.J., Siddiqi,
K.: Turbopixels: Fast superpixels using geometric flows. IEEE Trans. Pattern Anal.
Mach. Intell. 31, 2290–2297 (2009)

18. Grady, L.: Minimal surfaces extend shortest path segmentation methods to 3D.
IEEE Trans. on Pattern Analysis and Machine Intelligence 32, 321–334 (2010)

19. Boykov, Y., Funka-Lea, G.: Graph cuts and efficient nd image segmentation. In-
ternational Journal of Computer Vision 70, 109–131 (2006)

	Efficient Algorithms for Image and High Dimensional Data Processing Using Eikonal Equation on Graphs
	Introduction
	Graph Definitions and Operators on Weighted Graphs
	Proposed Formulation and Algorithms
	Eikonal Equation on Weighted Graphs
	Numericals Schemes and Algorithms

	Experiments and Applications
	Weighted Distances Computation on Graphs
	Image Processing
	High Dimensional Unorganized Data Processing

	Conclusion
	References

