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ABSTRACT

A crucial step in image compression is the evaluation of its performance, and more
precisely, available ways to measure the quality of compressed images. In this paper, a
machine learning expert, providing a quality score is proposed. This quality measure
is based on a learned classification process in order to respect human observers.
The proposed method namely Machine Learning-based Image Quality Measure
(MLIQM) first classifies the quality using multi-Support Vector Machine (SVM) classi-
fication according to the quality scale recommended by the ITU. This quality scale
contains 5 ranks ordered from 1 (the worst quality) to 5 (the best quality). To evaluate
the quality of images, a feature vector containing visual attributes describing images
content is constructed. Then, a classification process is performed to provide the final
quality class of the considered image. Finally, once a quality class is associated to the
considered image, a specific SVM regression is performed to score its quality. Obtained
results are compared to the one obtained applying classical Full-Reference Image
Quality Assessment (FR-IQA) algorithms to judge the efficiency of the proposed method.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, it has become an ordinary thing for anybody
to take photos with digital cameras, to upload images on
computers and to use softwares to apply many image
processing algorithms on these images (compression,
deblurring, denoising, etc.). This is a simple and representa-
tive example of the growing of digital media that is every-
where in our world. Many Tera-bytes thus transit on the
Internet. In order to reduce the amount of transmitted data,
one typical applied processing on an image is compression,
so that little data is to be further transmitted. There are
many compression schemes, such as the so-called JPEG that
is the most famous and commonly used. Very recently,
Google has launched their own compression scheme: WebP
[1]. It is supposed to offer lesser bit rates than JPEG for the
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same quality. This implies that efficient performance mea-
sures are available. The way to evaluate this performance is
a crucial step regarding image compression, and more
precisely available ways to measure the quality of com-
pressed images. There is a very rich literature on image
quality criteria, generally dedicated to specific applications
(optics, detector, compression, restoration, etc.). Quality
evaluation can be divided into two main topics: (1) objec-
tive and (2) subjective evaluation.

The first topic gives place to two families of criteria:
(1) basic and (2) Human Visual System (HVS)-based
criteria. The first family corresponds to the traditional
criteria known as mathematical measures, because they
result from geometry (concept of distance) or from signal
processing (signal to noise ratio). The second family of
criteria takes into account the characteristics of the
human visual system by a weighting of images’ errors.
This second topic relates to psychophysical experiments
allowing to add a subjective dimension to the quality
evaluation process. Due to the time-expensive aspect of
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this last topic, Image Quality Assessment (IQA) algorithms
have been intensively investigated to quantify the quality
of a compressed image.

IQA algorithms can be divided into three main topics:
(1) Full-reference (FR) IQA methods, (2) Reduced-refer-
ences (RR) IQA techniques and (3) No-reference (NR)
IQA algorithms.

FR-IQA algorithms refer to algorithms that require the
presence of a reference signal for the prediction of the
quality of a test signal while RR-IQA techniques refer to
algorithms that only require partial information about the
reference signal in order to predict the quality of a test
signal. NR-IQA solutions refer to algorithm for which the
reference signal is not available. The two first classes of IQA
algorithms can be considered as similarity measures since
the main goal of those methods is to judge how two images
are visually close. RR-IQA algorithms provide a solution that
lies between full-reference and no-reference models.

The usually applied scheme to design an IQA algorithm
consists in performing (1) a color space transformation to
obtain decorrelated color coordinates and (2) a decomposi-
tion of these new coordinates towards perceptual channels.
An error is then estimated for each of these channels. A final
quality score is obtained by pooling these errors in both
spatial and frequency domains. The most common way to
perform this pooling is to use the Minkowski error metric.
Some studies [2] have shown that this summation does not
perform well. The same final value can be computed for two
different degraded images even if the visual quality of the
two images is drastically different [3]. This is due to the fact
that the implicit assumption of this metric is based on the
independence of all signal samples. It is yet commonly
assumed that this is not true when one uses perceptual
channels. This explains why the Minkowski metric might
fail to generate a good final score. The use of such a metric is
not necessarily the best way to score the quality of a test
image. Actually, in the recommendations given by the ITU
[4], the human observers have to choose a quality class from
an integer scale from O to 100. Those scores characterize the
quality of the reconstructed images in semantic terms
{excellent, very good, good, bad, very bad}. That
way, the human observers make then neither more nor less
than one classification, and the given score could be inter-
preted as a confidence of the observer in its judgment. In
addition, when a human being judges the quality of an
image, many internal psychophysical scales come into play
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[5,6]. Since it is not natural for human beings to score the
quality of an image, they prefer to give a semantic descrip-
tion of what they are watching. This semantic description is
usually feeling description: “it is beautiful”, “it is bad”
and so on.

Previous works tried to apply a machine learning-based
approach, mainly based on standard back propagation
neural network to predict the quality score of a test image
[7-9]. E.g., Bouzerdoum et al. [7] propose a FR-IQA algo-
rithm based on a neural network approach. The chosen
neural network is a standard back propagation neural net-
work. Its input layer consists of as many neurons as
parameters in the input vector. The network has two hidden
layers of six neurons each, and one output neuron. The
characteristic vector to be input into the neural network is
chosen to be composed of several elements based on the
Wang et al.’s [10] features. These include the image mean
and the image standard-deviation of both the reference and
the test image, the covariance and the MSE between the
reference and the test image. More recently, Narwaria and
Lin [11] propose an IQA algorithm based on support vector
regression. The input features are the singular vectors out of
singular value decomposition. Yet, the proposed approaches
do not account for the intrinsic classification process of the
quality judgment of human beings.

All IQA algorithms perform well (in terms of high
correlation with human ratings) for very poor or very
good quality images but in between there are big differ-
ences between algorithms. Firstly, one can assume that
for medium quality images, predicted scores do not reflect
very well human ratings and predicted scores are not as
good as they should be. In a second interpretation, one
can assume that an IQA algorithm using the same sensi-
tivity across the quality continuum would not be able to
refine its prediction for medium quality images. It should
be better to develop a quality metric that can modulate its
sensitivity with respect to image quality. One way to
do so is to classify image quality with respect to quality
classes and from the obtained classification, to modelize
the distribution of each class in order to design a quality
function the sensitivity of which will differ from others.

In this paper, the modelization of the judgment of
human beings by a machine learning expert to design a
FR-IQA algorithm is proposed. Fig. 1 displays the general
scheme of the Machine Learning-based Image Quality
Measure (MLIQM) used to predict the quality of a test

Class C‘ — Regression f —m Quality score

ClassC, — ! Regression f, | s Quality score

Class C, —m Regression f | —m Quality score

Fig. 1. General scheme of the proposed method to obtain the final quality score of a test image.
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image. After computing a feature vector including several
local quality features, a SVM multi-class classification
process is performed to provide the final quality class
C;, vie[l,..,5] of the test image. Those five correspond
to the quality classes as advocated by recommendation
ITU-R BT.500-11 [4]. Finally, from this classification, a
SVM regression process is applied to score the quality of
the test image as follows. Each quality class is associated
with a score range of length 1: the first class is associated
to the range [0,1], the second one to the range [1,2[and so
on until the fifth quality class that is associated to the
range [4,5]. For each class C;, Vi e[l,...,5], a regression
function is designed in order to score the quality of a
degraded image within the associated range. Thus, the
quality of a degraded image is scored between 0 and 5.

This way, the proposed IQA method yields a sensitivity
adaptation to quality image in order to counterbalance
medium prediction of usually used IQA techniques.

The paper is structured as follows. In Section 2, we briefly
present the set of features used to describe the quality of
images. Section 3 details how classification and regression
are performed with Support Vector Machines. Section 4
presents obtained results. The last section concludes.

2. The selected full-reference features

When a human being judges the quality of an image,
the employed internal scales are supposed to be scales
of comparison for which a “conscious” reference image is
required. This is to put in relation with the inherent
conscience of each human being. The conscience is related
to what Freud calls “the perception-consciousness sys-
tem” [12]. It concerns a peripheral function of the psychic
apparatus which receives information from the external
world and those coming from the memories and the
internal feelings of pleasure or displeasure. The immediate
character of this perceptive function involves an inability for
the conscience of keeping a lasting trace of this information.
It sends them to the preconscious, a place of a first setting in
memory. The consciousness perceives and transmits signif-
icant qualities. Freud employs a formula like “index of
perception, of quality, of reality” to describe the content of
the operations of the perception—conscience system.

Thus, to design the input features vector of the
classification process, only derived full-reference charac-
teristics are employed. A scalar is then generated for each
trial feature. The whole set of computed scalars forms the
feature vector associated to an image. This vector will be
classified to designate the associated class of quality.

This section describes the used set of features to
measure degradations of the distorted image. This cate-
gory of criteria is obtained measuring the dissimilarity
between an original image and its degraded version.
Many criteria have been developed considering either
the definition domain of the image (e.g. color space), the
frequency domain (e.g. Fourier transform, DCT) or the
spatio-frequency space (e.g. wavelet transform).

Sheik et al. [13] compared 10 recent IQA algorithms
and determined which had particularly high levels of
performance. They concluded that more can be done to
reduce the gap between machine and human evaluation of

image quality. Seshadrinathan and Bovik [14] studied the
relationship between the structural similarity (SSIM) [10]
and VIF [15] frameworks and older metrics, i.e. the MSE
and HVS-based quality metrics. They concluded that SSIM
and VIF are closely related to the older IQA metrics under
certain natural scene modeling assumptions. This also was
recently studied by Horé and Ziou who defined a bijective
relation between SSIM and PSNR yielding predictions of
SSIM values from PSNR (and inversely) [16]. The global
conclusion of all those comparison studies is that no IQA
algorithm has been shown to definitively outperform all
others for all possible degradations, although owing to the
inclusion of both scene models and perceptual models, the
MS-SSIM index outperforms many with statistical signifi-
cance. Thus, factors embedded in the MS-SSIM index will
serve a spatial criterion as described in Section 2.1.
Wang et al. [17] have shown that natural images are
highly structured, in the sense that their pixels exhibit
strong dependencies, and these dependencies carry impor-
tant information about the visual scene. Structural informa-
tion is located on visible edges of the image. These edges
correspond to spatial frequency that infers in a positive or
negative way with the other frequencies to produce spatial
structures of the image. Thus, spatial-frequency factors are
computed to take into account the structural information.

2.1. Spatial criteria (13 features)

The first selected criteria in our study concern the
factors integrated in the MS-SSIM metric proposed by
Wang and Bovik [18]. These criteria allow us to measure
(1) the luminance distortion, (2) the contrast distortion
and (3) the structure comparison. Those criteria are
computed considering only the achromatic information.
The authors proposed to represent an image as a vector in
an image space. In that case, any image distortion can be
interpreted as adding a distortion vector to the reference
image vector. In this space, the two vectors that represent
luminance and contrast changes span a plane that is
adapted to the reference image vector. The image distor-
tion corresponding to a rotation of such a plane by an
angle can be interpreted as the structural change.

The luminance comparison between an original image I
and its degraded version J is defined as

2pypy+C

)= —F—5—7
.0 W +17+Ch

9]
where y; and y, respectively, represent the mean intensity
of the images I and J, and C; is a constant for avoiding
instability when u7+u}~0. A common choice for the
stabilizing constant is C; = (K;L)?, where L is the theoretical
dynamic range of the image’s pixels and K; = 0.01.

The contrast distortion measure is defined to have a
similar form:

2010’]+C2
L= —5—5—= 2
C( J) 6,2+O']2+C2 ( )
where C, is a non-negative constant commonly defined
as C; = (K5L)? (K5 = 0.03), and o (resp. oy) represents the

standard deviation.
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The structure comparison is performed after lumi-
nance subtraction and contrast normalization. The struc-
ture comparison function is defined as

o, j+C
SJy= =2

— = 3
O']O'J+C3 ( )

where C; is a non-negative constant defined as C3 = C;/2,
and oy =1/(N-1) 321" ;(li—p)(;—4). Substituting Cs by
C,/2 in (3)

20']'] +C,

sd,h= m

4)
To obtain a multi-scale index, a low-pass filter is applied
to the reference (I) and the distorted images (J). Next a
downsampling of the filtered images by a factor of 2 is
performed. Considering the initial design of the MS-SSIM
index that consists of computing the factors c(-) and s(-) at
five different scales, and the luminance I(-) at the coarser
level, 11 distortion maps are generated. Each of them is
then pooled in a single scalar distortion score, providing
11 factors that are integrated in the feature vector.

Since previous criteria only concern the achromatic
axis, two local descriptors dedicated to chromatic infor-
mation are computed [19]. Those descriptors are not
punctually defined in the image but with respect to the
mean value of the local neighborhood of the pixel. The
two used features are (1) a local chrominance distortion
feature measuring the sensitivity of an observer to color
degradation within a uniform area and (2) a local colori-
metric dispersion feature that measures the spatio-colori-
metric dispersion in each one of the two color images. The
calculation of these two descriptors is performed in an
antagonist Luminance-Chrominance color space, namely
the CIE Lab color space [20]. These two criteria are also
included in the feature vector.

2.2. Spatial-frequency criteria (12 features)

The aim of such features is to model, as well as
possible, HVS-characteristics such as contrast masking
effects, the luminance variation sensitivity and so on.
There are many models to estimate the visibility of errors
by simulating the relevant functional properties of the
HVS. All these models perform decomposition of the input
signal into a set of channels, each of them being selec-
tively sensitive to a restricted range of spatial frequencies
and orientations, in order to account for the spatial-
frequency sensitivity of the HVS. Decompositions mainly
differ from number radial bands, orientations and band-
width [21-23].

Among all existing decompositions, the steerable pyr-
amid transform [24] is used in this paper to quantify
contrast masking effects. The decomposition consists of
many spatial frequency levels, which are further divided
into a set of orientation bands. The basis function is
directional derivative operators. In this paper, three levels
with four orientation bands with bandwidths of 45
degrees 0, 45, 90, 135 plus one isotropic lowpass filter
are used. Fig. 2 presents an example decomposition of a
synthetic image and the associated Fourier transform
magnitude of the four used filters.

a

Fig. 2. Illustration of the (a) three levels steerable pyramidal decom-
position of a synthetic image containing a white disk centered on a dark
background and (b) the associated Fourier transform magnitude of the
four used filters.

The coefficients induced by the decomposition are
next squared to obtain local energy measures. As men-
tioned in [25], those coefficients are normalized to take
into account the dynamic limited range of the mechan-
isms in the Human Visual System.

Let a(x,y,f,0) be an original coefficient issued from the
decomposition process located at the position (xy) in fre-
quency band y and orientation band 6. The associated
squared and normalized sensor output r(x,y, f,0) is defined as

@y, f.0)°
> pe0.45,90,135(AXY. f, $))* +02

rx.y.f.0)=k (6))

This procedure leads to normalized sensors having a
limited dynamic range. Each sensor is able to discriminate
contrast differences over a narrow range of contrasts. This
is why the use of multiple contrast bands (with different
k's and a’s) is required to discriminate contrast changes
over the full range of contrast.

The final stage computes the simple squared error norm
between the sensor outputs from the reference image
ro(x,y.f,0) and the degraded images ri(x,y.f,0) for each
frequency band t and orientation band 0:

2

Ar(f,0)= (6)

Zro(xvyvag)_r1 (X'yvag)
Xy

From this step, 12 scores are available and integrated
within the feature vector.
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3. SVM classification and regression

From all existing classification schemes, a Support
Vector Machine (SVM)-based technique has been selected
due to high classification rates obtained in previous works
[26], and to their high generalization abilities. The SVMs
were developed by Vapnik [27] and are based on the
structural risk minimization principle from the statistical
learning theory. SVMs express predictions in terms of a
linear combination of kernel functions centered on a
subset of the training data, known as support vectors (SV).
y; € {—1,+1}, SVM maps the input vector x into a high-
dimensional feature space H through some non-linear
mapping functions ¢ : R"—-H, and builds an optimal
separating hyperplane in that space. The mapping opera-
tion ¢(-) is performed by a kernel function K(.,-) which
defines an inner product in H. The separating hyperplane
given by a SVM is w - ¢»(x)+b = 0. The optimal hyperplane
is characterized by the maximal distance to the closest
training data. The margin is inversely proportional to the
norm of w. Thus computing this hyperplane is equivalent
to minimize the following optimization problem:

Yy(w,b,&) = %kuz +c<zm: é) o

i=1

where the constraint V[, : y;[w- ¢(x)+b]>=1-¢;, &=0
requires that all training examples are correctly classified
up to some slack ¢ and C is a parameter allowing trading-
off between training errors and model complexity. This
optimization is a convex quadratic programming pro-
blem. Its whole dual [27] is to maximize the following
optimization problem:
m -l m
W(o) = Z“"‘j > oy yKxx) ®)

i=1 ij=1

subject to V", :0<o;<C, 3" ;y0,=0. The optimal
solution o* specifies the coefficients for the optimal hyper-
plane w* = 31" ; ofy;¢(x;) and defines the subset SV of all
support vectors (SV). An example x; of the training set is a
SV if of > 0 in the optimal solution. The support vectors
subset gives the binary decision function h:

h(x)=sign(f(x)) with f(x)=" ofy;K(x;x)+b*
ieSV

©)

where the threshold b* is computed via the unbounded
support vectors [27] (i.e, 0<oaf <C). An efficient algo-
rithm SMO (Sequential Minimal Optimization) [28] and
many refinements [29,30] were proposed to solve dual
problem.

Table 1

213

3.1. SVM model selection

Kernel function choice is critical for the design of a
machine learning expert. Radial Basic Function (RBF)
kernel function is commonly used with SVM. The main
reason is that RBFs works like a similarity measure between
two examples.

In this paper, the common One-Versus-One (0OO)
decomposition scheme is used to create 10 binary classi-
fiers. Let t;j, Vi € [1,5], j € [2,5] be a binary problem with
tij € {+1,—1}. Number 5 represents the final quality
classes according to the ones recommended by the ITU.
Let h;(-) (Eq. (9)) be the SVM decision function obtained by
training it on the ith binary problem. Table 1 gives binary
problems transformation used in the OO scheme.

The binary problem transformation is the first part of a
combination scheme. A final decision must be taken from
all binary decision functions. Since the SVMs are binary
classifiers, the resolution of a multi-class problem is
achieved through a combination of binary problems in
order to define a multi-class decision function D. Several
combination schemes of binary classifiers exist [31,32].
One interesting way to achieve this combination is the
use of the theory of evidence [33,34] since the confidence
one has in classifier can be taken into account for the final
assignment decision.

3.2. The combination of binary classifiers

Once the multi-class classifier has been decomposed in
10 binary classifiers, one needs to take a decision about the
final quality class assignment of the input vector. This
assignment is done using the theory of evidence framework
(also known as the Dempster-Shafer theory or the belief
functions theory) [35,33]. Indeed, each of the binary classi-
fiers can be considered as an information source that can be
imprecise and uncertain. Combining these different sources
using the theory of evidence yields to process uncertain
information to take the final assignment decision.

Conceptually, the final decision is taken with respect
to the confidence we have on the results of each binary
classifier. The confidence index can be provided in many
different ways: a recognition rate, a likelihood probability,
an a posteriori probability and so on. Yet, SVMs do not
directly provide such a measure.

In this paper, an a posteriori probability is computed
from the output of the SVM and will serve as confidence
index. Instead of estimating the class-conditional densi-
ties p(f|y), a parametric model is used to fit the a posteriori
p(y=1|f) where f represents the uncalibrated output
value of SVMs. Platt [28] has proposed a method to compute

Binary problems transformation used in a One-Versus-One combination scheme.

Class tsa tsq
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+1 +1
-1 - - -
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the a posteriori probabilities from the obtained SVM para-
meters. The suggested formula is based on a parametric
form of a sigmoid as

1

py=1lf)= 1+exp(Ef +F)

(10)
where parameters E and F are fit using maximum likelihood
estimation from a training set (f;,y;). Those parameters are
found by minimizing the negative log likelihood of the
training data, which is a cross-entropy error function
defined as

min— tilog(p;)+(1—tlog(1-p;) (11

where t; = (y;+1)/2 represents the target probabilities from
a new training set (f;,t;), and p; = 1/(1+exp(Ef; +F)). This
sigmoid model is equivalent to assume that the SVM out-
puts are proportional to the log odds of a positive example.

3.2.1. Elements of theory of evidence

Let Q={w,...,wony} be the set of N final classes
possible for the quality of an image, called the frame of
discernment. In our study, N=5 and Q corresponds to
the five final classes (w));.;.s representing the five
quality classes {excellent, very good, good, bad,
very bad} [4]. Instead of narrowing its measures to the
set 2 (as performed by the theory of probability con-
strained by its additivity axiom), the theory of evidence
extends on the power set £, labeled as 2, the set of the
2N subsets of Q. Then, a mass function m is defined and
represents the belief allowed to the different states of the
system, at a given moment. This function is also known as
the initial mass function m(-) defined from 2¢ in [0,1] and
corroborating

> m@A)=1 and m@)=0 (12)

AcQ

where m(A) quantifies the belief that the search class
belongs to the subset A<= Q (and to none other subset
of A). Subsets A such as m(A) > 0 are referred to as focal
elements. A represents either a singleton w; or a disjunc-
tion of hypothesis. In the case where the set of hypothesis
is exhaustive and exclusive, the mass of the empty set is
equal to 0. Such an assumption means that the solution
belongs to the frame of discernment.

In case of imperfect data (e.g., incomplete or uncertain
data), fusion is an interesting solution to obtain more
relevant information. In that case, the combination can be
performed from the mass function in order to provide
combined masses synthesizing the knowledge of the
different sources.

Two initial mass functions m; and m, representing the
information providing from two independent sources, can
be combined according to Dempster’s [35] rule:

> Bnc — aM1(B)ma(C)

Q
e , VAe22 A0 (13)

m(A) =

where K is known as the conflict factor and represents the
discrepancy between the two sources. It corresponds
to the mass of the empty set if the masses are not

normalized:
K= % miBmy0) (14)
BNC =0

One notes that Dempster’s combination, also known as
orthogonal sum and written as m =m; @ m,, is commu-
tative and associative.

When performing Dempster’s combination, it is crucial
to take into account the value of K, which is the normal-
ization term of the combination: the higher the value, the
more incoherent the combination. When k=1 one reaches
a complete opposition and the data fusion is impossible.
Several solutions have been developed to deal with this
conflict term. For example Smets and Kruse [36] proposed
to avoid the normalization step, since they considered the
conflict can only come from a bad definition of Q. In that
case, K represents the mass associated to one or more
new hypotheses that have not been initially taken into
account.

After performing the combination, the decision asso-
ciated to the most “probable” element Q has to be
quantified. Among the existing rules of decision, the most
commonly used is the maximum of the pignistic prob-
ability. This decision rule, introduced by Smets [37], uses
the pignistic transformation that allows one to distribute
the mass associated to a subset of Q over each one of its
elements:

m(A)

BetP(w,m)= AL Vo, e Q, V1<l<5 (15)

wieAc Q

where |A| is the cardinal of A. The decision is executed
from the highest value of the elements of Q.

3.2.2. Mass function design

One of the main drawbacks of the theory of evidence is
the design of mass functions: the quality of the fusion
process depends on the quality of the mass function.
The design of this mass function is deeply linked to the
application. Yet, there are three commonly used models:
(1) the distance-based model introduces by Denceux [38]
and Denceux and Zoushal [39], (2) Shafer’'s model [33]
based on a likelihood function where the conditional a
priori probability function is supposed to be known and
(3) Appriou’s models [40] also based on likelihood func-
tions. In [40], the author proposed two models to manage
the uncertain learning in the framework of evidence
theory. Those models are consistent with the Bayesian
approach when the mass is only allocated to singletons.

Among the three previous models, the one proposed
by Denceux [38] has been retained in our study on account
of its integration of both the distance to the neighbors and
different criteria of neighborhood in its definition. Thus the
mass m({w;}) is defined as a decreasing function of the
distance d between the vector to classify and the barycenter
of the class:

{ m(ay) = o exp(—7,d*)

m(Q)=1-m(w) (16)

where 0 <o <1 is the a posteriori probability computed
from the binary SVM dedicated to the class w,. 7, depends
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on the class w; and is computed by minimization of an error
criterion using the SEM (Stochastic Expectation Maximiza-
tion) algorithm [41].

The mass functions yield to take into account the
associated uncertainty to each one of the classifiers.
Thus, close classes are brought together in the same focal
element, and the final decision is taken only after combin-
ing the obtained results from other projections.

To construct such a focal element, the input vector is
not associated to only one class from {w1,w,,w3,w4,ws},
but to a subset of classes corresponding at most to 2. To
generate such a subset, the affectation constraint has to
be loosened. One way to perform that is to generate
an interval computed from the maximum value of the
a posteriori probabilities to generate the subset A such as

A= {w € Q/max(p;)—d, < p; < max(p))} a7

where | € {1,...,5} and §, is an ad hoc constant depending
on the used classifier.

In that case, all the classes for which their probabilities
are included within this new interval are considered as
candidates for classification during the fusion process.

3.3. SVM regression scheme

Even if scoring the quality of an image is not natural
for human beings, it is quite necessary to obtain a scalar
quality score. The main reason is due to the fact that total
order only exists in the real set R.

SVMs can be applied not only to classification pro-
blems but also to the case of regression. Our SVM-based
classifier does not directly provide any quality score. In
order to provide such a quality score, we use the support
vector regression technique referred to as v-SVR [42]
which is commonly used to solve regression problems.
In particular v-SVR has the advantage of being able to
automatically adjust the width of the ¢-tube [42].

We first present the ¢-SVR and then present v-SVR
as an improvement [42,27]. Given the training data S =
mapped to z = &(x) in feature space, then a linear function
fx,w)=wTz+b is constructed in such a way that it
deviates as less as possible from the training set according
to a e-insensitive loss function:

0 if |[y—f(x)|<e
ly—f)|, = { | |

|y—f(x)|—¢ otherwise

while llwll is as small as possible. This is equivalent to
minimize

m
min% w2 +C<Z(§i+6?‘)>
i=1
subject to V™|, y;—f; < e+, fi—yi < €+ &,6,.Ef = 0 where
fi=f&x;,w) and C is a user-defined constant. After training,
those nonzero &;’s and &'s will be exactly equal to the
difference between the corresponding y; and f;.
A drawback of ¢-SVR is that ¢ can be difficult to tune.
v-SVR alleviated this problem trading off ¢ against model
complexity and training error using parameter v > 0.

Mathematically, the problem becomes

o1 1,
min jIw2+C<ve+EX:(Ci+f;k)> (18)

w,e,&ixi =

subject to VM, y—f; <ec+&f, fi—yi<e+&.8,E =0 and
¢ > 0. Scholkopf and Smola [43] have shown that v is an
upper bound of the fraction of margin errors and a lower
bound of the fraction of SV. Furthermore, they have
shown that, with probability 1, v equals to both fractions.
Thus, in situations where prior knowledge on these
fractions is available, v is much easier to adjust than e.

In this paper, the RBF is chosen as kernel for v-SVR. For
each quality class, a v-SVM is trained in order to estimate
function f as defined in Eq. (9) using the quality scores of
the training sets. In order to be coherent with the ITU
scale, a numerical scale is assigned to each quality class.
The range of the five quality scales is [0;5] and each
quality scale has a numerical scale of length 1. Thus the
quality class “very bad quality” is associated to the scale
[0,1], the following one “bad quality” is associated to the
scale ]1;2], and so on until the final quality class “excel-
lent” that is associated to the scale ]4;5]. Thus, no overlap
between scores obtained from different classes is possible.

Finally, one obtains five regression functions asso-
ciated to each quality class applying the One-Versus-All
approach. When a distorted image is first classified within
a quality class, the associated regression function yields to
score the quality of that image using a scalar number
depending on the associated quality class. When all the
score ranges for all five regression functions are consid-
ered, a continuous score scale from 0 to 5 is available to
predict the quality of a candidate image.

4. Experimental setup and performance measure
4.1. Experimental setup

4.1.1. The used image databases

To judge the performance of the proposed approach,
two different image databases are used: (1) the LIVE
database release 2 [44] and (2) the TID2008 database [45].
The LIVE database consists of five subsets of five types of
distortions: (1) JPEG2000 distortions (227 images), (2) JPEG
distortions (233 images), (3) White noise distortions (174
images) (4) Gaussian blur distortions (174 images) and
(5) Fast-fading Rayleigh channel distortions (which are
simulated with JPEG2000 compression followed by channel
bit-errors) (174 images). The subjective ratings (that will
serve as groundtruth) in its Differential Mean Opinion Score
(DMOS) form are also available.

The TID2008 database contains 25 reference images
and 1600 distorted images using 16 distortion types, as
described in Table 2. The MOS value of each image is
provided too.

The training and test sets design. To apply the MLIQM
classification process, two distinct sets have been gener-
ated from the trail databases: the training sets and the
test sets. Since five quality classes are used, ten 00-SVM
classifiers are designed.
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Table 2
Description of the 17 degradation types within the TID2008 database.

Degradation Type of distortion

#
1 Additive Gaussian noise
2 Additive noise in color components is more intensive
than additive noise in the luminance component
3 Spatially correlated noise
4 Masked noise
5 High frequency noise
6 Impulse noise
7 Quantization noise
8 Gaussian blur
9 Image denoising
10 JPEG compression
11 JPEG2000 compression
12 JPEG transmission errors
13 JPEG2000 transmission errors
14 Non-eccentricity pattern noise
15 Local block-wise distortions of different intensities
16 Mean shift (intensity shift)
17 Contrast change

One training set (TrainC1) is generated from LIVE
database. This is composed of the degraded versions of
12 images of the LIVE image database, for all kinds of
degradation. The LIVE test set (TestC1) is composed of the
degraded versions of the 13 remaining images.

To complete v-SVM regression, five training sets (TrainR1,
TrainR2, ..., TrainR5) are generated for each quality class,
following the same previous design process. This will result
in five regression functions design, i.e., one per quality class.

The parameters of both the SVM classification scheme
and the v-SVM regression scheme are determined using
a 10-fold cross-validation technique on the training sets.
In addition, a bootstrap process with 999 replicates is
used to quantify the performance of MLIQM.

As training is only applied on LIVE subsets (TrainC1,
TrainR1, TrainR2, ..., TrainR5), the entire TID2008 image
database will serve as test set as well as the subset TestC1.

Performance measures. To measure the performance of
the proposed approach, a comparison with usual state-of-
the-art FR-IQA algorithms is performed. These FR-IQA
techniques are MS-SSIM [10], VSNR [46], VIF [15] and
PSNR. All these methods are computed using the lumi-
nance component of the images.

To provide quantitative performance evaluation, three
measures of correlation have been used: (1) Pearson,
(2) Kendall and (3) Spearman measures. To perform the
Pearson correlation measures (CC), a logistic function (as
adopted in the video quality experts group (VQEG) Phase |
FR-TV test [47]) was used to provide a non-linear map-
ping between the predicted values and subjective scores.
This function is a three-parameter logistic function:

by

") = T exp(—by(x—b3))

(19)
This nonlinearity is applied to the FR-IQA algorithm score,
which gives a better fit for all data. Kendall (KROCC) and
Spearman (SROCC) rank order correlation measures were
computed between the DMOS values and the predicted
scores obtained using any trial FR-IQA algorithms. Those

measures can be interpreted as prediction accuracy mea-
sures (Pearson and Kendall coefficients) and prediction
monotonicity measure (Spearman coefficient).

4.2. Results

All three correlation coefficients (LCC, KROCC, SROCC)
have been computed between the predicted values and
the subjective DMOSs considering the test set TestC1, the
entire LIVE database and the entire TID2008 database.
Since similar results have been obtained for the three
correlation coefficients, only SROCC is reported.

Fig. 3 presents SROCC values obtained between the
predicted values and the subjective DMOSs considering both
the test set TestC1 and the entire LIVE database for all the five
trial FR-IQA methods. Concerning the MLQIM algorithm, the
displayed results are median values of SROCC. From the
correlation evaluation results, we see that the performance of
the MLIQM is significantly better than for the four tested FR-
IQA algorithms when whole LIVE database is considered. For
most subsets of LIVE, the use of MLIQM provides consistent
improvement in the performance of IQA algorithms for
different correlation coefficients. Even if all improvements
are not significant (which is not really surprising since several
trial IQA measures achieve high performance on LIVE), this
consistency of improvement can be interpreted as an
indicator of the validity of the proposed approach. A second
interpretation concerns the selected features. As they are of
prime importance to reach high quality results for machine
learning classification and regression, this improvement
tends to demonstrate that the used features are relevant
to design SVM classification and regression-based NR-IQA
algorithm. Even if MLIMQ seems to be less performant for
fast fading degradation (that uses JP2K), the difference of
correlation coefficients with the best IQA method is not
significantly different. Fig. 4 presents an example of pre-
dicted quality scores by MLIQM on degraded images.

These high obtained correlation coefficient values
were expected since the training sets used to train the
SVM classifier and the SVM regression scheme were
generated from LIVE database.

Fig. 5 displays the performance of the trail IQA algo-
rithms with the TID2008 image database. No new training
phase has been performed. This means that shown results
are obtained from the MLIQM technique trained on TrainC1
and (TrainR1, ..., TrainR5) sets for, respectively, the SVM
classification step and the SVM regression step. The pro-
posed approach yields to obtain high SROCC values for most
subsets of TID database. Except for degradations #5, #7,
#12, #15, #16 and #17, MLIQM provides improvement of
performance. In addition, when all subsets are considered,
the proposed scheme significantly outperforms the trial NR-
IQA algorithms, namely MS-SSIM, VSNR, VIF and PSNR.

Degradations #5 and #7, respectively, deal with high
frequency noise and quantization noise. Considering the
first kind of artifact, the difference of correlation between
the best IQA algorithm (MS-SSIM) and the MLIQM approach
is not statistically significant. This is not true if the second
degradation is highlighted. This degradation can be inter-
preted as a loss of color, which induces artificial structural
information (edges) for strong quantization. In that case,
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Fig. 3. Obtained correlation coefficients between the predicted DMOS values and the subjective DMOSs considering LIVE database test set.

JP2K distorted
MLIQM = 2.214
MS-SSIM = 0.884
VIF = 0.156
VSNR = 13.52
PSNR = 22.92 dB

JPEG distorted
MLIQM = 4.671
MS-SSIM = 0.985
VIF = 0.602
VSNR = 16.68
PSNR = 29.82 dB

MLIQM = 3.441
MS-SSIM = 0.942
VIF = 0.302
VSNR = 13.39
PSNR = 22.82 dB

FastFading distorted
MLIQM = 2.210
MS-SSIM = 0.513
VIF = 0.014

VSNR = Inf

PSNR = 16.66 dB

Fig. 4. Example of results obtained computing the trial FR-IQA algorithms on an original image (churchandcapitol extracted from LIVE and its
degraded versions by applying JPEG (0.83865 bpp), JPEG2000 (0.194 bpp), Gaussian blur (¢ = 1.565074) and a fast fading process (receiver SNR=18.9).

structural dissimilarities are high and are perfectly captured
using MS-SSIM index. The used entry features for MLIQM
contain many other features that could blur the information
provided by dedicated structural features. Yet, the correla-
tion difference between the two approaches (MS-SSIM and
MLIQM) is small.

Considering compression oriented degradations, except
for degradation #12 (JPEG transmission errors), MLIQM
yields an increase of SROCC values for compression-
degraded images. In addition, degradation #15 (local

block-wise distortions of different intensities) can be con-
sidered as transmission errors since local blocks of the image
are color degraded. As for degradation #12, a small correla-
tion difference is noticeable between MS-SSIM and MLIQM.

Degradations #16 and #15, respectively, concern a
change of intensity and of contrast. They cannot be
considered only as a degradation process, but also as a
change of the naturalness of images. When analyzing the
images corresponding to the considered degradation,
visible differences between the reference image and the
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Fig. 5. Obtained Spearman rank order correlation coefficient (SROCC) between the predicted DMOS values and the subjective DMOSs considering

TID2008 database as test set. The type of degradations is described in Table 2.

degraded versions are not necessarily great. Nevertheless,
for these degradations, a small difference of correlation is
between the best IQA algorithm and the MLQIM.

Finally, considering the entire TID database, MLIQM
yields (1) a higher correlation rate and (2) a statistically
significant difference with the other trial IQA schemes. In
addition, adding more elements associated to degradation
for which MLIQM is less performant, the proposed approach
should perform better (since 100 images for those degrada-
tions do not seem to reach a relevant training process).

The same final remark formulated for obtained results
on LIVE can be applied to TID: this consistency of
improvement for subsets as for the entire TID database
can be considered as an indicator of the validity of the
proposed approach.

The complexity of the proposed approach relies on the
training phase in order to design both the classification
process and the regression scheme. This phase can (and
should) be done offline, as a preprocessing stage. Actually,
both SVMs and v-SVRs training are of high complexity.
Once MLIQM is trained, during the online stage, its
complexity depends on the complexity of feature extrac-
tion process, since the complexity associated to both
classification and regression stage can be neglected. Even
if this complexity is higher than simple IQA algorithms, it
is acceptable since MLIQIM provides very high correlations
obtained with respect to human judgments (and it out-
performs IQA algorithms for some degradation).

5. Discussion

The proposed FR-IQA algorithm based on SVM classifi-
cation and regression to compute the quality score of an
image seems to be a promising new way of design, since
whatever the used database (LIVE and TID), the consistency
of the correlation improvement is observed. This means
that the formulated hypothesis concerning the classifica-
tion process used by human beings when watching scenes
is valid. Furthermore, this classification strategy can be
modeled by a high dimensional classifier since many

details can modify the final human judgment. The fact
that humans are able to rank order the quality of images
can be modeled by a decision function. This function can be
formulated as a non-linear regression function. The belief
any human being can formulate about his decision can be
summarized by soft margin used to define the non-linear
decision function in the regression process. This is a new
framework to design FR-IQA algorithms.

Yet, even if the proposed scheme seems to be validated,
the obtained results are deeply linked to the extracted
features: in this case, a mere adjustment of the used vector
of features and of the used kernel functions is required.

The fact that correlation results obtained with MLIQM
(which integrate MS-SSIM factors) are most of the time
better than those obtained with MS-SSIM yields to per-
haps hypothesize that the original combination of the
MS-SSIM factors is not necessarily optimal. Maybe some
artifacts might not be well taken into account too.

6. Conclusion

In this paper a new approach to design a FR-IQA
algorithm is proposed. This approach is based on a
classification process such as the human being is supposed
to proceed to judge the quality of an object. To apply the
classification process, a vector of features has been gener-
ated. The selected features are chosen from full-reference
image HVS-based features and full-reference image fea-
tures, for both of them a reference image is needed.

The compared techniques with the proposed LMIQM
method are four state-of-the-art FR-IQA methods. The
obtained results show that LMIQM gives better results
and yields a significant improvement of the correlation
coefficients with human judgments.
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